• Title/Summary/Keyword: recognition-rate

Search Result 2,809, Processing Time 0.024 seconds

Comparison of Integration Methods of Speech and Lip Information in the Bi-modal Speech Recognition (바이모달 음성인식의 음성정보와 입술정보 결합방법 비교)

  • 박병구;김진영;최승호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.31-37
    • /
    • 1999
  • A bimodal speech recognition using visual and audio information has been proposed and researched to improve the performance of ASR(Automatic Speech Recognition) system in noisy environments. The integration method of two modalities can be usually classified into an early integration and a late integration. The early integration method includes a method using a fixed weight of lip parameters and a method using a variable weight according to speech SNR information. The 4 late integration methods are a method using audio and visual information independently, a method using speech optimal path, a method using lip optimal path and a way using speech SNR information. Among these 6 methods, the method using the fixed weight of lip parameter showed a better recognition rate.

  • PDF

Study of Speech Recognition System Using the Java (자바를 이용한 음성인식 시스템에 관한 연구)

  • Choi, Kwang-Kook;Kim, Cheol;Choi, Seung-Ho;Kim, Jin-Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.41-46
    • /
    • 2000
  • In this paper, we implement the speech recognition system based on the continuous distribution HMM and Browser-embedded model using the Java. That is developed for the speech analysis, processing and recognition on the Web. Client sends server through the socket to the speech informations that extracting of end-point detection, MFCC, energy and delta coefficients using the Java Applet. The sewer consists of the HMM recognizer and trained DB which recognizes the speech and display the recognized text back to the client. Because of speech recognition system using the java is high error rate, the platform is independent of system on the network. But the meaning of implemented system is merged into multi-media parts and shows new information and communication service possibility in the future.

  • PDF

HMM-Based Human Gait Recognition (HMM을 이용한 보행자 인식)

  • Sin Bong-Kee;Suk Heung-Il
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.5
    • /
    • pp.499-507
    • /
    • 2006
  • Recently human gait has been considered as a useful biometric supporting high performance human identification systems. This paper proposes a view-based pedestrian identification method using the dynamic silhouettes of a human body modeled with the Hidden Markov Model(HMM). Two types of gait models have been developed both with an endless cycle architecture: one is a discrete HMM method using a self-organizing map-based VQ codebook and the other is a continuous HMM method using feature vectors transformed into a PCA space. Experimental results showed a consistent performance trend over a range of model parameters and the recognition rate up to 88.1%. Compared with other methods, the proposed models and techniques are believed to have a sufficient potential for a successful application to gait recognition.

A Mouse Control Method Using Hand Movement Recognition (손동작 인식을 이용한 마우스제어기법)

  • Kim, Jung-In
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.11
    • /
    • pp.1377-1383
    • /
    • 2012
  • This paper proposes a human mouse system that replaces mouse input by human hand movement. As the resolution of monitors increases, it is not quite possible, due to the resolution difference between web cameras and monitors, to place the cursor in the entire range of a monitor by simply moving the pointer which recognizes the position of the hand from the web camera. In this regard, we propose an effective method of placing the position of the mouse, without repeating the returning hand movements, in the corners of the monitor in which the user wants it to be. We also proposes the recognition method of finger movements in terms of using thumb and index finger. The measurement that we conducted shows the successful recognition rate of 97% that corroborates the effectiveness of our method.

A Hierarchical Bayesian Network for Real-Time Continuous Hand Gesture Recognition (연속적인 손 제스처의 실시간 인식을 위한 계층적 베이지안 네트워크)

  • Huh, Sung-Ju;Lee, Seong-Whan
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.12
    • /
    • pp.1028-1033
    • /
    • 2009
  • This paper presents a real-time hand gesture recognition approach for controlling a computer. We define hand gestures as continuous hand postures and their movements for easy expression of various gestures and propose a Two-layered Bayesian Network (TBN) to recognize those gestures. The proposed method can compensate an incorrectly recognized hand posture and its location via the preceding and following information. In order to vertify the usefulness of the proposed method, we implemented a Virtual Mouse interface, the gesture-based interface of a physical mouse device. In experiments, the proposed method showed a recognition rate of 94.8% and 88.1% for a simple and cluttered background, respectively. This outperforms the previous HMM-based method, which had results of 92.4% and 83.3%, respectively, under the same conditions.

Feature Extraction of Handwritten Numerals using Projection Runlength (Projection Runlength를 이용한 필기체 숫자의 특징추출)

  • Park, Joong-Jo;Jung, Soon-Won;Park, Young-Hwan;Kim, Kyoung-Min
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.818-823
    • /
    • 2008
  • In this paper, we propose a feature extraction method which extracts directional features of handwritten numerals by using the projection runlength. Our directional featrures are obtained from four directional images, each of which contains horizontal, vertical, right-diagonal and left-diagonal lines in entire numeral shape respectively. A conventional method which extracts directional features by using Kirsch masks generates edge-shaped double line directional images for four directions, whereas our method uses the projections and their runlengths for four directions to produces single line directional images for four directions. To obtain the directional projections for four directions from a numeral image, some preprocessing steps such as thinning and dilation are required, but the shapes of resultant directional lines are more similar to the numeral lines of input numerals. Four [$4{\times}4$] directional features of a numeral are obtained from four directional line images through a zoning method. By using a hybrid feature which is made by combining our feature with the conventional features of a mesh features, a kirsch directional feature and a concavity feature, higher recognition rates of the handwrittern numerals can be obtained. For recognition test with given features, we use a multi-layer perceptron neural network classifier which is trained with the back propagation algorithm. Through the experiments with the handwritten numeral database of Concordia University, we have achieved a recognition rate of 97.85%.

Relevance-Weighted $(2D)^2$LDA Image Projection Technique for Face Recognition

  • Sanayha, Waiyawut;Rangsanseri, Yuttapong
    • ETRI Journal
    • /
    • v.31 no.4
    • /
    • pp.438-447
    • /
    • 2009
  • In this paper, a novel image projection technique for face recognition application is proposed which is based on linear discriminant analysis (LDA) combined with the relevance-weighted (RW) method. The projection is performed through 2-directional and 2-dimensional LDA, or $(2D)^2$LDA, which simultaneously works in row and column directions to solve the small sample size problem. Moreover, a weighted discriminant hyperplane is used in the between-class scatter matrix, and an RW method is used in the within-class scatter matrix to weigh the information to resolve confusable data in these classes. This technique is called the relevance-weighted $(2D)^2$LDA, or RW$(2D)^2$LDA, which is used for a more accurate discriminant decision than that produced by the conventional LDA or 2DLDA. The proposed technique has been successfully tested on four face databases. Experimental results indicate that the proposed RW$(2D)^2$LDA algorithm is more computationally efficient than the conventional algorithms because it has fewer features and faster times. It can also improve performance and has a maximum recognition rate of over 97%.

Recognition Method of Chinese Finger Number 2, 6, 8 Using Angle Information (각도정보를 이용한 중국식 한손 숫자표현 2,6,8 분류 방법)

  • Lee, Ping;Lee, Hee-Seong;Kim, Mi-Hye
    • Journal of Korea Game Society
    • /
    • v.12 no.6
    • /
    • pp.121-130
    • /
    • 2012
  • Due to recent developments in smart media, the desire for interaction between humans and computers has increased. In order to satisfy these needs, gesture recognition fields have been actively studied using image processing. In this paper, we propose a method to recognize Chinese hand numeric representation using image processing. The method binarizes an input image based on skin color to extract region of interest and check the number using the angular information of stretched fingers. Our proposed method has 95.83% of recognition rate.

Neural Network-based Recognition of Handwritten Hangul Characters in Form's Monetary Fields (전표 금액란에 나타나는 필기 한글의 신경망-기반 인식)

  • 이진선;오일석
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.5 no.1
    • /
    • pp.25-30
    • /
    • 2000
  • Hangul is regarded as one of the difficult character set due to the large number of classes and the shape similarity among different characters. Most of the conventional researches attempted to recognize the 2,350 characters which are popularly used, but this approach has a problem or low recognition performance while it provides a generality. On the contrary, recognition of a small character set appearing in specific fields like postal address or bank checks is more practical approach. This paper describes a research for recognizing the handwritten Hangul characters appearing in monetary fields. The modular neural network is adopted for the classification and three kinds of feature are tested. The experiment performed using standard Hangul database PE92 showed the correct recognition rate 91.56%.

  • PDF

A new Implementation of Perceptual LPC Cepstrum and its Application to Speech Recognition (인지 LPC cepstrum의 새로운 구현 및 음성인식에의 적용)

  • Kim, Jin-Young;Choi, Seong-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.61-64
    • /
    • 1996
  • To improve the performance of a recognition system, namely the recognition rate, we propose a hew implementation of perceptual distance using LPC cepstrum(perceptual cepstrum, PLC). The PLC is caculated by convolution of a usual LPC cepstrum and a perceptual lifter(PL). To caculate PL, we define a new weighting function in the linear frequency domain considering the frequency scale(Bark-scale) characteristics. The PL is the inverse Fourier transform of the exponents of the weighting function. We verified our method through the speech recognition experiments. The performance of PLC was compared with that of the rasied sine liftering method.

  • PDF