• Title/Summary/Keyword: recognition-rate

Search Result 2,809, Processing Time 0.028 seconds

A Study on Face Recognition and Reliability Improvement Using Classification Analysis Technique

  • Kim, Seung-Jae
    • International journal of advanced smart convergence
    • /
    • v.9 no.4
    • /
    • pp.192-197
    • /
    • 2020
  • In this study, we try to find ways to recognize face recognition more stably and to improve the effectiveness and reliability of face recognition. In order to improve the face recognition rate, a lot of data must be used, but that does not necessarily mean that the recognition rate is improved. Another criterion for improving the recognition rate can be seen that the top/bottom of the recognition rate is determined depending on how accurately or precisely the degree of classification of the data to be used is made. There are various methods for classification analysis, but in this study, classification analysis is performed using a support vector machine (SVM). In this study, feature information is extracted using a normalized image with rotation information, and then projected onto the eigenspace to investigate the relationship between the feature values through the classification analysis of SVM. Verification through classification analysis can improve the effectiveness and reliability of various recognition fields such as object recognition as well as face recognition, and will be of great help in improving recognition rates.

Speech Recognition Error Compensation using MFCC and LPC Feature Extraction Method (MFCC와 LPC 특징 추출 방법을 이용한 음성 인식 오류 보정)

  • Oh, Sang-Yeob
    • Journal of Digital Convergence
    • /
    • v.11 no.6
    • /
    • pp.137-142
    • /
    • 2013
  • Speech recognition system is input of inaccurate vocabulary by feature extraction case of recognition by appear result of unrecognized or similar phoneme recognized. Therefore, in this paper, we propose a speech recognition error correction method using phoneme similarity rate and reliability measures based on the characteristics of the phonemes. Phonemes similarity rate was phoneme of learning model obtained used MFCC and LPC feature extraction method, measured with reliability rate. Minimize the error to be unrecognized by measuring the rate of similar phonemes and reliability. Turned out to error speech in the process of speech recognition was error compensation performed. In this paper, the result of applying the proposed system showed a recognition rate of 98.3%, error compensation rate 95.5% in the speech recognition.

Iris Recognition using Multi-Resolution Frequency Analysis and Levenberg-Marquardt Back-Propagation

  • Jeong Yu-Jeong;Choi Gwang-Mi
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.3
    • /
    • pp.177-181
    • /
    • 2004
  • In this paper, we suggest an Iris recognition system with an excellent recognition rate and confidence as an alternative biometric recognition technique that solves the limit in an existing individual discrimination. For its implementation, we extracted coefficients feature values with the wavelet transformation mainly used in the signal processing, and we used neural network to see a recognition rate. However, Scale Conjugate Gradient of nonlinear optimum method mainly used in neural network is not suitable to solve the optimum problem for its slow velocity of convergence. So we intended to enhance the recognition rate by using Levenberg-Marquardt Back-propagation which supplements existing Scale Conjugate Gradient for an implementation of the iris recognition system. We improved convergence velocity, efficiency, and stability by changing properly the size according to both convergence rate of solution and variation rate of variable vector with the implementation of an applied algorithm.

Improvement of Bit Recognition Rate for Color QR Codes By Multiplexing Color and Pattern Information (색 및 패턴 정보 다중화를 이용한 칼라 QR코드의 비트 인식률 개선)

  • Kim, Jin-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.1012-1019
    • /
    • 2021
  • Currently, since the black-white QR (Quick Response) codes have limited storage capacity, color QR codes have been actively being studied. By multiplexing 3 colors, the color QR codes can allow the code capacity to be increased by three times, however, the color multiplexing brings about the possibility of crosstalk and noises in the acquisition process of the final image, incurring the decrease of bit-recognition rate. In order to improve the bit recognition rate, while keeping the storage capacity high, this paper proposes a new type of color QR code which uses the pattern information as well as the color information, and then analyzes how to increase the bit recognition rate. For this aim, the paper presents an efficient system which extracts embedded information from color QR code and then, through practical experiments, it is shown that the proposed color QR codes improves the bit recognition rate and are useful for commercial applications, compared to the conventional color codes.

Vocabulary Likelihood rate Process support for Recognition rate Improvement of Vocabulary Recognition System (어휘 인식 시스템의 인식률 향상을 위한 어휘 유사율 처리 지원)

  • Kim, Kyuho;Oh, Sang Yeob
    • Journal of Digital Convergence
    • /
    • v.10 no.11
    • /
    • pp.359-363
    • /
    • 2012
  • In the vocabulary recognition model, system has some problems that vocabulary is nor recognize and similar vocabulary recognition is created., because it is caused by system extract vocabulary feature from inaccurate vocabulary. To solve this problems, this paper propose the system modeling and implementation for efficient configuration thread support system, it process the configuration thread information and it apply the facet method in database retrieve for optimization of vocabulary likelihood rate. Proposed system showed 95.31% of vocabulary dependency recognition rate and 97.38% vocabulary independency recognition rate in system performance.

Noise Removal using a Convergence of the posteriori probability of the Bayesian techniques vocabulary recognition model to solve the problems of the prior probability based on HMM (HMM을 기반으로 한 사전 확률의 문제점을 해결하기 위해 베이시안 기법 어휘 인식 모델에의 사후 확률을 융합한 잡음 제거)

  • Oh, Sang-Yeob
    • Journal of Digital Convergence
    • /
    • v.13 no.8
    • /
    • pp.295-300
    • /
    • 2015
  • In vocabulary recognition using an HMM model which models the prior distribution for the observation of a discrete probability distribution indicates the advantages of low computational complexity, but relatively low recognition rate. The Bayesian techniques to improve vocabulary recognition model, it is proposed using a convergence of two methods to improve recognition noise-canceling recognition. In this paper, using a convergence of the prior probability method and techniques of Bayesian posterior probability based on HMM remove noise and improves the recognition rate. The result of applying the proposed method, the recognition rate of 97.9% in vocabulary recognition, respectively.

Analysis of the Recognition Rate of Distance between RFID Tag and the Surface and the Contact Area for Application in Packaging Material -Focusing on Moisture Content of the Products- (패키징 소재 적용을 위한 RFID 태그 사이의 거리와 접촉 면적에 따른 인식률 분석 -제품의 수분함량을 중심으로-)

  • Yoon, Seongyoung;Lee, Hacrae;Ko, Euisuk;Kim, Doyeon;Kim, Jaineung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • The recognition rate of RFID system is made a big difference by the selection of tag type and performance of reader, packing materials and the attachment location of tag and the recognition of angle according to the above factors. Water content is the most effective factor among the various elements that affected to the recognition of RFID as the center. Therefore, the purpose of this study was to measure the RFID recognition rate per water content, the distance recognition rate of RFID tag, the RFID tag and the recognition rate by contact area. In analysis of recognition rate according to water content, 100% of recognition was possible when food product contained 0~25% moisture. However, when water content was over than 30%, recognition rate was declined less than 95%. The recognition rate between RFID tag according to water content was higher when distance was over than 0.3 cm. In the recognition rate about the contact area of RFID tag according to water content, the recognition rate was declined when the contact area becomes wider.

Emotion Recognition Method Based on Multimodal Sensor Fusion Algorithm

  • Moon, Byung-Hyun;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.105-110
    • /
    • 2008
  • Human being recognizes emotion fusing information of the other speech signal, expression, gesture and bio-signal. Computer needs technologies that being recognized as human do using combined information. In this paper, we recognized five emotions (normal, happiness, anger, surprise, sadness) through speech signal and facial image, and we propose to method that fusing into emotion for emotion recognition result is applying to multimodal method. Speech signal and facial image does emotion recognition using Principal Component Analysis (PCA) method. And multimodal is fusing into emotion result applying fuzzy membership function. With our experiments, our average emotion recognition rate was 63% by using speech signals, and was 53.4% by using facial images. That is, we know that speech signal offers a better emotion recognition rate than the facial image. We proposed decision fusion method using S-type membership function to heighten the emotion recognition rate. Result of emotion recognition through proposed method, average recognized rate is 70.4%. We could know that decision fusion method offers a better emotion recognition rate than the facial image or speech signal.

Comparative Analysis of Speech Recognition Open API Error Rate

  • Kim, Juyoung;Yun, Dai Yeol;Kwon, Oh Seok;Moon, Seok-Jae;Hwang, Chi-gon
    • International journal of advanced smart convergence
    • /
    • v.10 no.2
    • /
    • pp.79-85
    • /
    • 2021
  • Speech recognition technology refers to a technology in which a computer interprets the speech language spoken by a person and converts the contents into text data. This technology has recently been combined with artificial intelligence and has been used in various fields such as smartphones, set-top boxes, and smart TVs. Examples include Google Assistant, Google Home, Samsung's Bixby, Apple's Siri and SK's NUGU. Google and Daum Kakao offer free open APIs for speech recognition technologies. This paper selects three APIs that are free to use by ordinary users, and compares each recognition rate according to the three types. First, the recognition rate of "numbers" and secondly, the recognition rate of "Ga Na Da Hangul" are conducted, and finally, the experiment is conducted with the complete sentence that the author uses the most. All experiments use real voice as input through a computer microphone. Through the three experiments and results, we hope that the general public will be able to identify differences in recognition rates according to the applications currently available, helping to select APIs suitable for specific application purposes.

Digit Recognition using Speech and Image Information (음성과 영상 정보를 이용한 우리말 숫자음 인식)

  • 이종혁;최재원
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.1
    • /
    • pp.83-88
    • /
    • 2002
  • In the majority of case, speech recognition method tried recognition using only speech information In order to highten the recognition rate, we proposed recognition system that recognige digit using speech and image information. Through an experiment, this paper compared the recognition rate performed by existent speech recognition method and speech recognition method that includes image information. When we added the image information to the speech information, the speech recognition rate was increased about 6%. This paper shows that adding image information to speech information is more effective than using only speech information In digit recognition.