• Title/Summary/Keyword: reclamation material

Search Result 115, Processing Time 0.02 seconds

Evaluation of Biogas Production Performance and Archaeal Microbial Dynamics of Corn Straw during Anaerobic Co-Digestion with Cattle Manure Liquid

  • Zhang, Benyue;Zhao, Hongyan;Yu, Hairu;Chen, Di;Li, Xue;Wang, Weidong;Piao, Renzhe;Cui, Zongjun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.4
    • /
    • pp.739-747
    • /
    • 2016
  • The rational utilization of crop straw as a raw material for natural gas production is of economic significance. In order to increase the efficiency of biogas production from agricultural straw, seasonal restrictions must be overcome. Therefore, the potential for biogas production via anaerobic straw digestion was assessed by exposing fresh, silage, and dry yellow corn straw to cow dung liquid extract as a nitrogen source. The characteristics of anaerobic corn straw digestion were comprehensively evaluated by measuring the pH, gas production, chemical oxygen demand, methane production, and volatile fatty acid content, as well as applying a modified Gompertz model and high-throughput sequencing technology to the resident microbial community. The efficiency of biogas production from fresh straw (433.8 ml/g) was higher than that of production from straw silage and dry yellow straw (46.55 ml/g and 68.75 ml/g, respectively). The cumulative biogas production from fresh straw, silage straw, and dry yellow straw was 365 l-1 g-1 VS, 322 l-1 g-1 VS, and 304 l-1 g-1 VS, respectively, whereas cumulative methane production was 1,426.33%, 1,351.35%, and 1,286.14%, respectively, and potential biogas production was 470.06 ml-1 g-1 VS, 461.73 ml-1 g-1 VS, and 451.76 ml-1 g-1 VS, respectively. Microbial community analysis showed that the corn straw was mainly metabolized by acetate-utilizing methanogens, with Methanosaeta as the dominant archaeal community. These findings provide important guidance to the biogas industry and farmers with respect to rational and efficient utilization of crop straw resources as material for biogas production.

Investigation of Synthesis and Antibacterial Properties of a Magnetically Reusable Fe3O4-ACCS-Ag Nanocomposite (재사용이 가능한 나노복합재료 Fe3O4-ACCS-Ag의 제조 및 항균 특성 평가)

  • Shim, Jaehong;Kim, Hea-Won;Kim, Jin-Won;Seo, Young-Seok;Oh, Sae-Gang;Cho, Min;Park, Junghee;Oh, Byung-Taek
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.3
    • /
    • pp.25-33
    • /
    • 2015
  • In this study, Fe3O4-ACCS-Ag nanoparticles (NPs) were successfully synthesized using silica extracted from corn cob ash. The synthesized Fe3O4-ACCS-Ag NPs were characterized using X-ray diffraction (XRD), scanning electron microscopyenergy dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscopy (TEM) and fourier transform infrared spectroscopy (FTIR). In addition, the potential application of Fe3O4-ACCS-Ag NPs as an antibacterial material in water disinfection was investigated using Escherichia coli ATCC 8739 as model bacteria. The antibacterial activity of synthesized composite material showed 99.9% antibacterial effect within 20 min for the tested bacteria. From this experiment, the synthesized Fe3O4-ACCS-Ag nanocomposites also hold magnetic properties and could be easily recovered from the water solution for its reuse. The reused nanocomposites presented the decreasing antibacterial efficiencies with the reuse cycle but the composite used three times still killed 90% of bacteria in 20 min.

Strength and Earth Pressure Characteristics of Industrial Disposal Flowable Filling Materials Utilizing Backfiller (뒤채움재로 사용된 산업폐기물 유동화 처리토의 강도 및 토압특성)

  • Bang, Seongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.3
    • /
    • pp.5-13
    • /
    • 2021
  • Due to population growth and industrial development, the amount of industrial waste is increasing every year. In particular, in a thermal power plant using finely divided coal, a large amount of coal ash is generated after combustion of the coal. Among them, fly ash is recycled as a raw material for cement production and concrete admixture, but about 20% is not utilized and is landfilled. Due to the continuous reclamation of such a large amount of coal ash, it is required to find a correct treatment and recycling plan for the coal ash due to problems of saturation of the landfill site and environmental damage such as soil and water pollution. In recent years, the use of a fluid embankment material that can exhibit an appropriate strength without requiring a compaction operation is increasing. The fluid embankment material is a stable treated soil formed by mixing solidifying materials such as water and cement with soil, which is the main material, and has high fluidity before hardening, so compaction work is not required. In addition, after hardening, it is used for backfilling or filling in places where compaction is difficult because higher strength and earth pressure reduction effect can be obtained compared to general soil. In this study, the possibility of use of fluidized soil using high water content cohesive soil and coal ash is considered. And it is intended to examine the flow characteristics, strength, and bearing capacity characteristics of the material, and to investigate the effect of reducing the earth pressure when applied to an underground burial.

A Study on the recycling of sewage sludge cake using microwave drying (하수슬러지 케이크의 마이크로파 건조 후 재활용 연구)

  • Ha, Sang An;Yeom, Hae Kyong;You, Mi Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.3
    • /
    • pp.77-84
    • /
    • 2006
  • The objective of this research is to evaluate various reclamation methods of sewage sludge cake after treating with microwave under optimum conditions. In this study the sewage sludge cakes used from S and N wastewater treatment plants in the P city. Microwave with an induced electricity heating way was employed for dehydration of sewage sludge cake. Microwave operation conditions is 2,450 MHz of frequency and the power with 1 to 4 kW. This sewage sludge cake had a moisture content of 70%. The moisture content of the sludge decreased notable up to 2%(wt) resulted in breaking of cell wall. When the treated sewage sludge cake mixed with soils could be applied to use midterm and last cover material soils. Moreover, the adsorption ability of heavy metals such as copper, lead, chromium and cadmium was greatly enhanced by treated sewage sludge cake. Within 30 minutes, 1ppm of copper, chromium and cadmium and 10ppm of lead with 1g of the treated sewage sludge cake in $100m{\ell}$ were below detection. It was possible to use the treated sewage sludge cake as an absorbent for absorption of toxic heavy metals. Results from this research indicated that using of microwave radiation was an effective method for treating sewage sludge cake economically and environmental. A point of view of reclamation, the treated sewage sludge cake appeared to be feasible with an adsorption of heavy metals in steady of using expensive yellow earth.

  • PDF

Effects of Dolomite and Oyster Shell on Nitrogen Processes in an Acidic Mine Soil Applied with Livestock Manure Compost

  • Yun, Seok-In;Seo, Dong-Hyuk;Kang, Ho Sang;Cheng, Hyocheng;Lee, Gunteak;Choi, Woo-Jung;Lee, Chang-Kyu;Jung, Mun Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.614-620
    • /
    • 2016
  • Mine soils are usually unfavorable for plant growth due to their acidic condition and low contents of organic matter and nutrients. To investigate the effect of organic material and lime on nitrogen processes in an acidic metal mine soil, we conducted an incubation experiment with treating livestock manure compost, dolomite, and oyster shell and measured soil pH, dehydrogenase activity, and concentration of soil inorganic N ($NH_4{^+}$ and $NO_3{^-}$). Compost increased not only soil inorganic N concentration, but also soil pH from 4.4 to 4.8 and dehydrogenase activity from 2.4 to $3.9{\mu}g\;TPF\;g^{-1}day^{-1}$. Applying lime with compost significantly (P<0.05) increased soil pH (5.9-6.4) and dehydrogenase activity ($4.3-7.0{\mu}g\;TPF\;g^{-1}day^{-1}$) compared with applying only compost. Here, the variation in dehydrogenase activity was significantly (P<0.05) correlated with that in soil pH. Soil inorganic N decreased with time by 14 days after treatment (DAT) due to N immobilization, but increased with time after 14 DAT. At 28 DAT, soil inorganic N was significantly (P<0.05) higher in the lime treatments than the only compost treatment. Especially the enhanced dehydrogenase activity in the lime treatments would increase soil inorganic N due to the favored mineralization of organic matter. Although compost and lime increased soil microbial biomass and enzyme activity, ammonia oxidation still proceeded slowly. We concluded that compost and lime in acidic mine soils could increase soil microbial activity and inorganic N concentration, but considerable ammonium could remain for a relatively long time.

Study on Recovery of Au from Flotation Tailing of Gold (금(金) 浮選(부선) 광미(鑛尾)로부터 금(金)의 회수(回收)에 관한 연구(硏究))

  • Shin, Seung-Han;Kang, Hyun-Ho;Hong, Jong-Won;Lee, Jin-Soo;Park, Je-Hyun;Han, Oh-Hyung
    • Resources Recycling
    • /
    • v.19 no.6
    • /
    • pp.61-69
    • /
    • 2010
  • S.M.C (DSME), only operating gold mine in Korea, is processing about 160 ton/day to recover gold and more than 150 ton/day of tailing is produced. Some portion of the tailings are used as a filler material after drying, but most of them are stored on the tailing dam. As a result of chemical analysis by a fire assay method, it contained Au 1.5~2.0 g/ton and 225~300 g per day of gold is getting discarded. It is urgent to develop a technology to recover and reutilize Au. In the present study, flotation tests were carried out to recovery gold for the tailings. Test results show that products with gold grade 21.31 g/ton(Au grade) and 62.73% (Au recovery) were obtained under the optimal conditions including KAX addition rate 97.2 g/ton, frother AF 65 (0.248 l/ton) and depressant sodium silicate (4 kg/ton), it's possible to recover one of the most valuable metal Au, by re-feeding to rougher flotation.

A Study on the Structure Characteristics of Planting Ground in Incheon International Airport, Korea (인천국제공항 식재기반 구조 및 토양특성 연구)

  • Lee, Seung-Won;Han, Bong-Ho;Lee, Kyong-Jae;Kwak, Jeong-In;Yeum, Jung-Hun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.3
    • /
    • pp.77-91
    • /
    • 2015
  • This study aims to suggest adequate soil management through the analysis of physicochemical properties of soil in the planting grounds of Incheon International Airport, which was constructed on a massive land reclamation site. Study areas were 5 sites at the international business complex, the passenger terminal, the airport support complex, the free trade zone, and the access road. Soil profile analysis showed that 9 plots out of the 27 plots were hardpan and heterospere within 80cm from the soil surface. The earth laid on the ground was categorized as gravel based soil(4 plots), dredged soil from the sea bottom and mixed reclamation materials(2 plots), clay with poor permeability(3 plots) and waste construction material(1 plot). Average soil hardness was $11.5kg/cm^2$ and soil textures were sandy soil, sandy loam and loamy sand. Average soil pH was 6.7 and average organic matter content was 0.7%. Electrical conductivity was 0.0dS/m and exchangeable cation concentrations were $Ca^{2+}$ 3.4cmol/kg, $Mg^{2+}$ 1.5cmol/kg, $K^+$ 0.3cmol/kg and $Na^+$ 1.0cmol/kg. Average cation exchange capacity was 11.0cmol/kg. Although average figures in Solum mostly meet the landscape design criteria, properties of each soil layer showed various values sometimes over the limit. Base saturations were $Ca^{2+}$ 29.9%, $Mg^{2+}$ 13.3% and $K^+$ 3.7% for lower soil, $Ca^{2+}$ 33.3%, $Mg^{2+}$ 17.0% and $K^+$ 2.7% for mid-soil and $Ca^{2+}$ 32.6%, $Mg^{2+}$ 12.2% and $K^+$ 1.9% for upper soil. Exchangeable sodium percentages were 16.4% for lower soil, 7.5% for mid-soil and 4.7% upper soil. Sodium adsorption rates were 0.8 for lower soil, 0.3 for mid-soil and 0.2 for upper soil. Factors affecting to the vegetation growth were heterogeneity and poorness of solum, disturbance of dredged soils, high soil hardness including hardpan in the subsurface soil layer and shallow effective soil depth, high soil acidity, imbalance of base contents, low organic matter content and low available phosphate levels in the soil.

Experimental Study on Evaluation of Material Properties in Cement Mortar with Pond Ash (매립회를 사용한 시멘트 모르타르의 재료 물성 평가에 대한 실험적 연구)

  • Jung, Sang Hwa;Kim, Joo Hyung;Kwon, Seung Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.108-117
    • /
    • 2013
  • Among the byproducts from thermal power plant using coal combustion, fly ash as mineral admixture is widely utilized in concrete manufacturing for its engineering merits. However residuals including bottom ash are usually reclaimed. This study presents an evaluation of engineering properties in cement mortar with pond ash (PA). For this work, two types of pond ash (anthracite and bituminous coal) are selected from two reclamation sites. Cement mortar specimens considering two w/c (0.385 and 0.485) ratios and three replacement ratio of sand (0%, 30%, and 60%) are prepared and their workability, mechanical, and durability performance are evaluated. Anthracite pond ash has high absorption and smooth surface so that it shows reasonable workability, strength development, and durability performance since it has dense pore structure due to smooth surface and sufficient mixing water inside. Reuse of PA is expected to be feasible since PA cement mortar has reasonable engineering performance compared with normal cement mortar.

Consolidation Characteristics of Clay and Pond Ash Soil Mixture (점토와 매립회 혼합토의 압밀특성)

  • Chae, Deok-Ho;Yune, Chan-Young;Kim, Kyoung-O;Cho, Wan-Jei
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.45-54
    • /
    • 2011
  • In this study, the consolidation characteristics are investigated on the artificial soil mixture of kaolinite, fine soils representing dredged soils and reclaimed coal ash from the ash ponds. A large sedimentation chamber was designed and manufactured to produce the artificial soil mixture with uniform stress history. In order to examine the consolidation characteristics in lateral and vertical directions, standard consolidation and Rowe Cell tests were performed. From the results of standard consolidation tests, the artificial soil mixture with coal ash showed lower compressibility and the larger consolidation coefficients enough to aid in early stabilization of the reclaimed sites compared with the kaolinite only. Also, in order to examine the consolidation characteristics when applying vertical drains, the drainage material was installed and tested in the Rowe Cell. The Rowe Cell test results show that the artificial soil mixture yields higher coefficient of consolidation. Thus, the application of artificial soil mixture on the reclaimed sites can shorten the consolidation time.

A Study on the Development of Soil Neutrailizing-agent using Waste Materials (Waste-lime, Oyster, Bottom-ash) (폐자원(폐석회, 굴패각, 바닥재)을 이용한 토양 중화제 개발 연구)

  • Oh, SeungJin;Cho, Mihyeon;Park, Chan-O;Jung, Moon-Ho;Lee, Jai-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.6
    • /
    • pp.92-101
    • /
    • 2012
  • Korea shows the soil pH is 5.8 ~ 6.2 by many factors including the geological structure and climate condition. There is known as the cause for soil acidification by weathering of the mineral, excessive use of the chemical fertilizer, and extensively diffused acid rain. The purpose of research is environmentally-friendly material neutralization technology development utilizing the waste resources against by acid soil. The experiment analyze the physico-chemical property of the acid soil and waste resource materials (waste lime, oyster shell, bottom ash). The Batch-Test was performed under 3 stage. As a result, the acid soil showed up acid soil about 3.19. And waste lime, oyster, bottom ash showed the alkalinity with 9.62, 10.08, 9.17. In case of 1 batch-test experimental result, waste lime and oyster shell, the alkalinity was shown over 7.5 and the good efficiency was showed, on the other hands, the bottom ash showed the pH 4 the neutralization efficiency which is low. waste resource materials to be applied to 2 steps was chosen as the waste lime except the bottom ash and oyster. In 2 step batch-test experiment, it was exposed to be the most appropriate in case of doing the combination ratio of the waste lime and oyster shell with 9 : 1. It was exposed to be efficient most in the effeciency and aspect of economical efficiency combination ratio of the soil and materials was 9.6 : 0.6 with 3 step batch-test experimental result.