• Title/Summary/Keyword: recirculation flow

Search Result 657, Processing Time 0.026 seconds

Performance Evaluation of Large Eddy Simulation for Recirculating and Swirling Flows (재순환 및 선회 유동에 대한 대와동모사(LES)의 성능검토)

  • Hwang Cheol-Hong;Lee Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.4 s.247
    • /
    • pp.364-372
    • /
    • 2006
  • The objective of this study is to evaluate the efficiency and the prediction accuracy of developed large eddy simulation (LES) program for complex turbulent flows, such as recirculating and swirling flows. To save the computational cost, a Beowulf cluster system consisting 16 processors was constructed. The flows in backward-facing step and dump combustor were examined as representative recirculating and swirling flows. Firstly, a direct numerical simulation (DNS) for laminar backward-facing step flows was previously conducted to validate the overall performance of program. Then LES was carried out for turbulent backward-facing step flows. The results of laminar flow showed a qualitative and quantitative agreement between simulations and experiments. The simulations of the turbulent flow also showed reasonable results. Secondly, LES results for non-swirling and swirling flows in a dump combustor were compared with the results of Reynolds-averaged Navier-Stokes (RANS) using standard $k-{\varepsilon}$ model. The results show that LES has a better performance in predicting the mean axial and azimuthal velocities, comer recirculation zone (CRZ) and center toroidal recirculation zone (CTRZ) than those of RANS. Finally, it was examined the capability of LES for the description of unsteady phenomena.

A Study on Thermal and Modal Characteristics for EGR System with Dimpled Rectangular Tube (딤플 사각 튜브형 배기 가스 재순환 시스템의 열 및 진동 특성에 관한 연구)

  • Seo, Young-Ho;Heo, Sung-Chan;Kwon, Young-Seok;Ku, Tae-Wan;Kim, Jeong;Kang, Beom-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.3
    • /
    • pp.115-125
    • /
    • 2008
  • Recently, Exhaust Gas Recirculation (EGR) system which re-flow a cooled exhaust gas from vehicles burning diesel as fuel to a combustion chamber of engine has been used to solve the serious air pollution. For the design and mass production of EGR system, it is essential to ensure structural integrity evaluation. The EGR system consisted of ten dimpled oval core rectangular tubes, two fix-plates, two coolant pipes, shell body and two flanges in this study. To confirm the safety of the designed system, finite element modeling about each component such as the dimpled oval core tube with the dimpled shape and others was carried out. The reliability of EGR system against exhaust gas flow with high temperature was investigated by flow and pressure analysis in the system. Also, thermal and strength analysis were verified the safety of EGR system against temperature change in the shell and tubes. Furthermore, modal analysis using ANSYS was also performed. From the results of FE analysis, there were confirmed that EGR system was safe against the flow of exhaust gas, temperature change in EGR system and vibration on operation condition, respectively.

Numerical and Experimental Study on Recirculation Flow Driven by an AC Electromagnetic Force in a Circular Container (교류전자기력에 의해 구동되는 원형 용기 내의 순환유동에 관한 수치해석적 및 실험적 연구)

  • Suh, Ga-Hyun;Suh, Seung-Gyu;Choe, Jong-Geun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1265-1272
    • /
    • 2011
  • We performed numerical simulations of the recirculation flow of an electrolyte fluid in a circular container driven by an AC electromagnetic force for solving continuity and momentum equations. We also conducted an experiment to obtain flow data, which were in good agreement with the numerical simulation results. Furthermore, we performed a parametric study on both numerical and experimental aspects and found that the fluid velocity increases with an increase in the electrolyte concentration and magnetic intensity and with a decrease in the fluid depth and AC frequency.

Three-dimensional Effects of an Axi-symmetric Pintle Nozzle (축대칭 핀틀노즐의 3차원 효과 분석)

  • Lee, Gang-Min;Sung, Hong-Gye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.47-55
    • /
    • 2018
  • In order to determine whether three-dimensional effects exist in a pintle nozzle of axisymmetric shape, a three-dimensional numerical analysis was performed. The compressibility correction was implemented with the k-${\omega}$ SST turbulence model to predict the complex flow separation transition in acceptable accuracy. Recirculation zones were observed at both the front end and rear faces of the pintle, and the flow through the pintle nozzle conveyed complex shock wave structures. Three-dimensional effects that resulted from the reasonable flow separation location were noted, and a trace of the transient pressure increase was observed, mismatched by a two-dimensional axi-symmetric analysis.

A Study on Flow and Combustion Characteristics of Flat Flame Burner (Flat Flame Burner의 유동과 연소 특성에 관한 연구)

  • Jeong, Y.K.;Kim, C.K.;Jeon, C.H.;Chang, Y.J
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.59-66
    • /
    • 2000
  • In this study, We studied flow and combustion characteristics of a Flat Flame Burner(FFB) with swirler. As swirl number increase, the streamlines is proceed close to tile and velocity is large. Blow-off limit decrease when swirl number is 1.24, but blow-off limit increase when combustion load is 6500kcal/hr. Temperature distribution is uniform in front of tile and NO formation is small at S=1.24. We expect that the radiation can be transmitted to the object and NOx will reduce because of recirculation zone

  • PDF

CARS thermometry in flame zone of turbine combustor sector rigs. (CARS 장치를 이용한 터빈 연소 시험기의 화염 온도 측정)

  • Park, C.W.;Lee, J.H.;Hahn, Y.M.;Ko, Y.S.;Lee, K.Y.;Kim, H.M.;Lee, S.Y.;Yang, S.S.;Lee, D.S.;Chang, Y.J.;Shin, H.D.;Hahn, J.W.
    • 한국연소학회:학술대회논문집
    • /
    • 2001.06a
    • /
    • pp.180-186
    • /
    • 2001
  • Spatially and temporally resolved gas temperature measurements have been made in aeroengine combustor sector rig burning standard kerosene fuel. Temperature PDFs have been obtained from a triple-sector double annular combustor rig running at simulated ground idle conditions, showing features of flow mixing within the burning rig. Mean temperature and temperature PDFs were measured by CARS to investigate flow characteristics of the recirculation zones.

  • PDF

MILD Combustion Characteristics with Inlet Air Velocity in a Conical Combustor (원추형 연소로에서 공기 유속에 따른 MILD 연소특성)

  • Kim, Tae-Kwon;Ha, Ji-Soo;Jo, A-Ron
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.774-779
    • /
    • 2012
  • MILD (Moderate and Intense Low Oxygen Dilution) combustion is a technology that uses the recirculation of combustion gas to increase thermal efficiency not only by keeping down the concentration of Nitric Oxides and temperature but also by uniformizing the internal temperature of the combustion furnace. This study is a trial to obtain MILD combustion characteristics by adjusting the equivalence ratio with the air flow rate in the conical combustor while keeping the fuel flow rate and measuring the exhaust gas of the combustion furnace.

Numerical Simulation on Flow and Heat Transfer in a Gas Atomizer (가스분무장치에서 열유동 특성에 관한 전산해석)

  • 이성연
    • Journal of Powder Materials
    • /
    • v.4 no.1
    • /
    • pp.55-62
    • /
    • 1997
  • Flow and heat transfer characteristics of gas, and trajectories and cooling characteristics of droplets/particles in a gas atomizer were investigated by a numerical simulation using FLUENT code. Among several kinds of solution method, the k-$\varepsilon$ turbulent model, power-law scheme, SIMPLE algorithm is adopted in this study. Momentum and heat exchange between a continuous phase(gas) and a dispersed phase(particle) were taken into account. Particle trajectories are simulated using the Lagrangian method, and Rosin-Rammler formula is used for the particle size distribution. Streamlines, velocities and pressures of gas, and trajectories, velocities and cooling rates of particles have been investigated for the various gas inlet conditions. Small but very intensive recirculation is found just below the melt orifice, and this recirculation seems to cause the liquid metal to spread radially. Particle trajectory depends on the particle size, the location of particle formation and the turbulent motion of gas. Small particle cools down rapidly, while large diameter particles solidify slowly, and this is mainly due to the differences in thermal inertia.

  • PDF

Affect of Flow Condition on Formation of Flameless Combustion (무화염 형성에 영향을 미치는 유동조건에 대한연구)

  • Hong, Seong Weon;Lee, Pil Hyong;Cha, Chun Loon;Song, Ki Jong;Im, Hyun Jin;Hwang, Sang Soon
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.189-192
    • /
    • 2012
  • The flameless combustion has been considered as one of the promising combustion technology for high energy efficiency and reducing NOx and CO emissions. To investigate the effects of fluid conditions on the formation of flameless combustion, a numerical approach was performed. The flameless combustion possesses lower temperature region and more uniform temperature distribution than conventional flame. The results show that the flow rate of the system which mainly influence on recirculation ratio is the most important parameter for flameless combustion.

  • PDF

Heat transfer of Mixed convection in rectangular space with constant heat flux (일정 열유속의 열원을 갖는 사각공간의 혼합대류 열전달)

  • 조대환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.552-558
    • /
    • 1999
  • Ventilation of the marine engine room is very important for the health of the workers as well as the normal operation of machines. To find proper ventilation conditions of this engine room numerical simulation with a standard k-$\varepsilon$model was carried out. In the present study the marine engine room is considered as a closed space with a heat source and forced ventilation ducts. The injection angle of air supply is found to be important. Injection with a downward angle depresses recirculation flow causing a strong stream in the wider space of the room Ventilation and removal of the released heat are promoted with this pattern, There is a possibility of local extreme heating at the upper surface of the engine when supply and exhaust ports of air are in bilateral symmetry.

  • PDF