• Title/Summary/Keyword: recirculation area

Search Result 131, Processing Time 0.025 seconds

The Effects of Obstacle Aspect Ratio on Surrounding Flows (장애물 외관비가 주변 흐름에 미치는 영향)

  • Lee, Jae-Jin
    • Atmosphere
    • /
    • v.17 no.4
    • /
    • pp.381-391
    • /
    • 2007
  • The characteristics of flow around a single obstacle with fixed height and varied length and width are numerically investigated using a computational fluid dynamics (CFD) model. As the obstacle length increases, flow distortion near the upwind side of the obstacle increases and the size of the recirculation zone behind the obstacle also increases. As the obstacle width increases, the size of the recirculation zone decreases, despite almost invariable flow distortion near the upwind side of the obstacle. Flow passing through an obstacle is separated, one part going around the obstacle and the other crossing over the obstacle. The size of the recirculation zone is determined by the distance between the obstacle and the point (reattachment point) at which both the flows converge. When the obstacle width is relatively large, flows are reattached at the obstacle surface and their recoveries occur. Resultant shortening of the paths of flows crossing over and going around decreases the size of the recirculation zone. To support this, the extent of flow distortion defined based on the change in wind direction is analyzed. The result shows that flow distortion is largest near the ground surface and decreases with height. An increase in obstacle length increases the frontal area fraction of flow distortion around the obstacle. In the cases of increasing the width, the frontal area fraction near the upwind side of the obstacle does not change much, but near the downwind side, it becomes larger as the width increases. The frontal area fraction is in a better correlation with the size of the recirculation zone than the building aspect ratios, suggesting that the frontal area fraction is a good indicator for explaining the variation in the size of the recirculation zone with the building aspect ratios.

Effect of Internal Flow inside Recirculation Chamber Nozzle for Automative Head Lamp on Cleaning Spray (자동차 헤드램프 세척용 재순환 챔버 노즐의 내부유동이 분무장에 미치는 영향)

  • Shin, J.H.;Lee, I.C.;Kang, Y.S.;Kim, J.H.;Koo, J.S.;Koo, J.Y.
    • Journal of ILASS-Korea
    • /
    • v.16 no.2
    • /
    • pp.90-96
    • /
    • 2011
  • Atomized liquid jets from the washing nozzle which configured with recirculation chamber for cleaning hot-zone area are accelerated and impinged on the head lamp surface. Cleaning efficiency of head lamp can be increased with injecting washing fluids into the hot-zone area. Experimental and numerical studies with various design parameters were executed to reveal the relations between internal geometry and internal flow in the washing nozzle. Spray structures were fitted with each of the head lamp surfaces and spray nozzles were optimized to the spray pattern. The recirculation chamber induces a recirculation flow and can be decreased the pressures perturbation inside the chamber. Orifice determines the mass flow rate. When the diameter of orifice is excessively large, it showed an unstable spray pattern. As a nozzle exit angle increases, density distributions are separated with two section. Also, as a protrusion length of nozzle exit increases, spray patterns are spread into a large area and density distributions showed unstable trend.

Numerical Simulation for Recirculation of Air Mass in the Coastal Region Using Lagrangian Particle Dispersion Model (라그랑지안 입자확산모델을 이용한 광양만 권역에서의 공기괴 재순환현상 수치모의)

  • Lee, Hwa-Woon;Lee, Hyun-Mi;Lee, Soon-Hwan;Choi, Hyun-Jung
    • Journal of Environmental Science International
    • /
    • v.19 no.2
    • /
    • pp.157-170
    • /
    • 2010
  • Air mass recirculation is a common characteristic in the coastal area as a result of the land-sea breeze circulation. This study simulates the recirculation of air mass over the Gwangyang Bay using WRF-FLEXPART and offers a basic information about the effective domain size that can reflect recirculation. For this purpose, WRF is set up four nested domains and three cases are selected. Subsequently FLEXPART is operated on the basis of WRF output. During the clear summer days with weak wind speed, particles that emitted from Yeosu national industrial complex and Gwangyang iron works flow into emission sources because of the land-sea breeze. When land-sea breeze is strengthen, the recirculation phenomena appears clearly. However particles aren't recirculated under weak synoptic condition. Also plume trajectory is analyzed and as a consequence, the smallest domain area have to be multiplied by 1.3 to understand recirculated dispersion pattern of particles.

A Computational Study of the Fuel-Cell Ejector System (연료전지 이젝터 시스템에 관한 수치해석적 연구)

  • Lee, Jun-Hee;Lee, Hae-Dong;NamKoung, Hyuck-Joon;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3191-3196
    • /
    • 2007
  • The present study addresses a method to operate a fuel-cell system effectively using a recirculation ejector which recycles wasted hydrogen gas. Configuration of a recirculation ejector is changed to investigate the flow behavior through it under varying operating conditions, and how such conditions affect the fuel-cell hydrogen cycle. The numerical simulations are based on a fully implicit finite volume scheme of the axisymmetric, compressible, Reynolds-Averaged, Navier-Stokes equations for hydrogen gas, and are compared with available experimental data for validation. The results show that a hydrogen recirculation ratio is effectively controlled by a configurational alteration within the operational region in which the recirculation passage doesn't plugged by a sonic line.

  • PDF

Modeling of the Air Pollutant Recirculation using the MM5-CAMx on Ozone Episode in Greater Seoul Area during June, 2004 (MM5-CAMx를 이용한 대기오염물질의 재순환현상 모델링: 2004년 6월 수도권 오존오염 사례연구)

  • Kim, Yoo-Keun;Oh, In-Bo;Kang, Yoon-Hee;Hwang, Mi-Kyoung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.3
    • /
    • pp.297-310
    • /
    • 2007
  • Recent evidence has demonstrated that the pollutant recirculation can play an important role in leading to high ozone $(O_3)$ concentrations. In this study, the MM5-CAMx air quality modeling system was applied to simulate the pollutant recirculation and identify the transport of pollution during the high $O_3$ event (the maximum $O_3$ of 195 ppb) observed in the Greater Seoul Area (GSA) on $1{\sim}4$ June in 2004. The results showed a weak northeasterly synoptic wind during the night and early morning moved the air parcels containing the locally emitted urban pollution to the coast, which contributed to enhance $O_3$ formation in the southwest part of the GSA. As the sea breeze developed and started to penetrate inland in the late afternoon, the rapid build-up of $O_3$ concentration was found in the southwest coastal area due to the recirculation of the polluted air loaded with high level $O_3$. The simulated backward trajectories and observations at coastal sites confirmed the recirculation of pollutant with the late sea breeze is the dominant factor affecting the occurrence of high $O_3$ concentrations in the southwestern GSA.

Effect of emergency core cooling system flow reduction on channel temperature during recirculation phase of large break loss-of-coolant accident at Wolsong unit 1

  • Yu, Seon Oh;Cho, Yong Jin;Kim, Sung Joong
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.979-988
    • /
    • 2017
  • The feasibility of cooling in a pressurized heavy water reactor after a large break loss-of-coolant accident has been analyzed using Multidimensional Analysis of Reactor Safety-KINS Standard code during the recirculation phase. Through evaluation of sensitivity of the fuel channel temperature to various effective recirculation flow areas, it is determined that proper cooling of the fuel channels in the broken loop is feasible if the effective flow area remains above approximately 70% of the nominal flow area. When the flow area is reduced by more than approximately 25% of the nominal value, however, incipience of boiling is expected, after which the thermal integrity of the fuel channel can be threatened. In addition, if a dramatic reduction of the recirculation flow occurs, excursions and frequent fluctuations of temperature in the fuel channels are likely to be unavoidable, and thus damage to the fuel channels would be anticipated. To resolve this, emergency coolant supply through the newly installed external injection path can be used as one alternative means of cooling, enabling fuel channel integrity to be maintained and permanently preventing severe accident conditions. Thus, the external injection flow required to guarantee fuel channel coolability has been estimated.

A Study on the Characteristics of the Soysauce Wastewater Treatment in Aerobic Submerged Biofilter (간접포기식 침지여상의 장류 폐수처리특성에 관한 연구)

  • 권영호;원찬희;신승원
    • Journal of Environmental Science International
    • /
    • v.7 no.5
    • /
    • pp.679-685
    • /
    • 1998
  • The Soysauce wastewater removal characteristics of submerged biofilters filled with two filter media respectively were experimentally examined with constant temperature, pH value and variable BOD loading and recirculation ratio. The decreasing order of BOD removal is Netring(random plastic media), cubic wire meshes(plastic module). This is mainly due to the media characteristics such as void ratio, specific surface area and media shapes. The BOD removal ratio decreases with increasing $BOD_5$/ volumetric loading rate, and the loading rate for the BOD removal over 85% is lower than 1.5kg$BOD_5$ 5/$m^3$d for the plastic media of Netring and cubic wire meshes. The $BOD_5$ removal rate increases with the recirculation ratio, but the rate of increase become smaller as the recirculation ratio increases over 20. When $BOD_5$ volumetric loading is 1.5kg$BOD_5$/$m^3$d, the required recirculation ratio to obtain 85% BOD$_{5}$ removal is about 20 for Netring and it was about 30 for cubic wire meshes.s.

  • PDF

An Experimental Study of the Variable Sonic/supersonic Ejector Systems (가변형 음속/초음속 이젝터 시스템에 관한 실험적 연구)

  • Lee Jun Hee;Kim Heuy Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.5 s.236
    • /
    • pp.554-560
    • /
    • 2005
  • A new method to improve the efficiency of a hydrogen fuel cell system was introduced by using variable sonic/supersonic ejectors. To obtain the variable area ratio of the nozzle throat to ejector throat which controls the mass flow rate of the suction flow, the ejectors used a movable cylinder inserted into a conventional ejector-diffuser system. Experiments were carried out to understand the flow characteristics inside the variable ejector system. The secondary mass flow rates of subsonic and supersonic ejectors were examined by varying the operating pressure ratio and area ratio. The results showed that the variable sonic/supersonic ejectors could control the recirculation ratio by changing the throat area ratio, and also showed that the recirculation ratio increased fur the variable sonic ejector and decreased for the variable supersonic ejector, as the throat area ratio increases.

Slurry Flow Simulation in the Separation Stage of Screw Decanter (스크류 데칸트 분리단 내부에서의 유동 해석)

  • Baek, Yeong-Su;Na, Eun-Su;Park, Jae-Deok
    • 연구논문집
    • /
    • s.31
    • /
    • pp.53-63
    • /
    • 2001
  • Numerical investigation based on the control-volume using finite-difference method has been made by the development of computer program in order to figure out the pattern of the flow field inside screw decanter. The typical flow pattern inside screw decanter is characterized by the two strong recirculation zones separated by the main stream from slurry discharge hole to exit. These recirculation regions and flow pattern are strongly influenced by the centrifugal force and the change of the value of slurry viscosities, that is,500, 1,000 and 3,000cp respectively. The wear of screw decanter appeared experimentally in two spots; one is near the circumferential area of the slurry discharge hole and the other is on the decanter blades at a certain height from the bottom to a different degree after the continuous long-term operation. These wears are partly explained by the flow pattern and the strong turbulence intensity near the recirculation attachment region.

  • PDF

A Study on the Application of Local-scale Air Mass Recirculation Factor to High-concentration PM2.5 Episode in Coastal Areas (연안 지역 고농도 PM2.5 사례에 대한 국지 규모 공기괴 재순환 지수 적용 연구)

  • Jung-woo Yoo;Ji Seon Kim;Eun Ji Kim;Soon-Hwan Lee
    • Journal of Environmental Science International
    • /
    • v.32 no.8
    • /
    • pp.521-531
    • /
    • 2023
  • This study analyzed the impact of recirculation on high-concentration PM2.5 in the coastal area. Through the analysis of observational data, it was observed that the development of sea breeze led to an increase in PM2.5 and SO42- concentrations. Hysplit backward trajectory analysis confirmed the occurrence of air mass recirculation. Results from WRF and CMAQ numerical simulations indicated that pollutants transported from land to sea during the night were re-transported to the land by daytime sea breeze, leading to high-concentration PM2.5 in Busan. To quantitatively investigate the recirculation a recirculation factor (RF) was calculated, showing an increase in RF values during high-concentration PM2.5 episodes. However, the RF values varied slightly depending on the time resolution of meteorological data used for the calculations. This variation was attributed to the terrain characteristics at observation sites. Additionally, during long-range transported days leading to nationwide high-concentration PM2.5 events, synoptic-scale circulation dominated, resulting in weaker correlation between PM2.5 concentration and RF values. This study enhances the understanding of the influence of recirculation on air pollution. However, it is important to consider the impact of temporal resolution and terrain characteristics when using RF for evaluating recirculation during episodes of air pollution.