• Title/Summary/Keyword: receptor-binding assay

Search Result 243, Processing Time 0.026 seconds

Proteomic Approach to the Cytotoxicity of 5-FU(Fluorouracil) in Colon Cancer Cells (대장암 세포에서 5-FU(Fluorouracil)의 세포독성과 관련된 단백체 분석)

  • Lee, Seo-Young;Song, Jin-Su;Roh, Si-Hun;Kim, Geun-Tae;Hong, Soon-Sun;Kim, Hie-Joon;Kwon, Sung-Won;Park, Jeong-Hill
    • YAKHAK HOEJI
    • /
    • v.53 no.3
    • /
    • pp.145-150
    • /
    • 2009
  • We evaluated cytotoxic effect based on the MTT assay and identified altered proteins in 5-FU(fluorouracil) treated HT29 cells using two-dimensional gel electrophoresis and MALDI-TOF/TOF-MS. As proteins inducing apoptosis, siah binding protein 1 and p47 protein isoform a were up-regulated and tumor protein translationally-controlled 1 was down-regulated by 5-FU treatment. And mannose 6 phosphate receptor binding protein 1 controls DNA mismatch repair system was increased. We suggest 5-FU promotes a cytotoxicity under the action of these proteins in colon cancer cells.

Identification of the IL-1$\beta$ inhibitor in the febrile patient urine by anti-IL-1$\beta$ monoclonal antibody (Anti-IL-1$\beta$ 단일클론 항체를 이용해서 발열환자의 뇨중 IL-1$\beta$ inhibitor의 확인)

  • 남경수;배윤수;남명수;오은숙;박순희;최인성;정태화
    • YAKHAK HOEJI
    • /
    • v.37 no.4
    • /
    • pp.420-426
    • /
    • 1993
  • To effectively purify of IL-1 inhibitor from human febrile urine, we have established monoclonal antibody that reacts with human recombinant interleukin l$\beta$(IL-1$\beta$). The antibody, designated ON-1, was highly specific to IL-1$\beta$ and no cross-reaction with other cytokines(IL-l$\alpha$ and IL-4) was observed. As the results of ELISA inhibition assay and Western blotting method, it was further identified that ON-1 had high binding specificity with IL-1$\beta$. IL-1 receptor binding material from febrile patient urine was effectively purified with affinity column chromatography which conjugated with ON-1. This urinary material inhibited the thymocyte proliferation in a dosedependent manner. IL-l$\beta$ induced thymocyte proliferation activity was inhibited to 67.3% at 6 $\mu\textrm{g}$ of the purified urinary material. The result may suggest that this urinary material the purified urinary material. The result may suggest that this urinary material will have antagonic effect on IL-1 action mechanism and act IL-l$\beta$ inhibitor.

  • PDF

Comparison of Some 3-(Substituted-Benzylidene)-1, 3-Dihydro-Indolin Derivatives as Ligands of Tyrosine Kinase Based on Binding Mode Studies and Biological Assay

  • Olgen, Sureyya
    • Archives of Pharmacal Research
    • /
    • v.29 no.11
    • /
    • pp.1006-1017
    • /
    • 2006
  • A series of 3-(substituted-benylidene)-1, 3-dihydro- indolin-2-one, 3-(substituted-benylidene)-1, 3-dihydro- indolin-2-thione and 2, 2'-dithiobis 3-(substituted-benylidene)-1, 3-dihydro-indole derivatives was investigated as inhibitor of $p60^{c-Src}$tyrosine kinase by performing receptor docking studies and inhibitory activity toward tyrosine phosphorylation. Some compounds were shown to be docked at the site, where the selective inhibitor PP1 [1-tert-Butyl-3-p-tolyl-1H-pyrazolo[3,4-d]pyrimidine-4-yl-amine] was embedded at the enzyme active site. Evaluation of all compounds for the interactions with the parameters of lowest binding energy levels, capability of hydrogen bond formations and superimposibility on enzyme active site by docking studies, it can be assumed that 3-(substituted-benzylidene)-1, 3-dihydro-indolin-2-one and thione derivatives have better interaction with enzyme active site then 2, 2'-dithiobis 3-(substituted-benzylidene)-1, 3-dihydro indole derivatives. The test results for the inhibitory activity against tyrosine kinase by Elisa method revealed that 3-(substituted-benylidene)-1, 3-dihydro- indolin-2-thione derivatives have more activity then 3-(substituted-benylidene)-1, 3-dihydro- indolin-2-one derivatives.

Diarylpropionitrile inhibits melanogenesis via protein kinase A/cAMP-response element-binding protein/microphthalmiaassociated transcription factor signaling pathway in α-MSH-stimulated B16F10 melanoma cells

  • Lee, Hyun Jeong;An, Sungkwan;Bae, Seunghee;Lee, Jae Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.2
    • /
    • pp.113-123
    • /
    • 2022
  • Diarylpropionitrile (DPN), a selective agonist for estrogen receptor β (ERβ), has been reported to regulate various hormonal responses through activation of ERβ in tissues including the mammary gland and brain. However, the effect of DPN on melanogenesis independent of ERβ has not been studied. The aim of this study is to examine the possibility of anti-melanogenic effect of DPN and its underlying mechanism. Melanin contents and cellular tyrosinase activity assay indicated that DPN inhibited melanin biosynthesis in alpha-melanocyte stimulating hormone-stimulated B16F10 melanoma cell line. However, DPN had no direct influence on in vitro tyrosinase catalytic activity. On the other hand, 17β-estradiol had no effect on inhibition of melanogenesis, suggesting that the DPN-mediated suppression of melanin production was not related with estrogen signaling pathway. Immunoblotting analysis showed that DPN down-regulated the expression of microphthalmia-associated transcription factor (MITF), a central transcription factor of melanogenesis and its down-stream genes including tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2. Also, DPN attenuated the phosphorylation of protein kinase A (PKA) and cAMP-response element-binding protein (CREB). Additionally, DPN suppressed the melanin synthesis in UVB-irradiated HaCaT conditioned media culture system suggesting that DPN has potential as an anti-melanogenic activity in physiological conditions. Collectively, our data show that DPN inhibits melanogenesis via downregulation of PKA/CREB/MITF signaling pathway.

Anti-SARS-CoV-2 receptor binding domain antibodies after the second dose of Sinovac and AstraZeneca vaccination

  • Marisca Evalina Gondokesumo;Anita Purnamayanti;Puri Safitri Hanum;Winnie Nirmala Santosa;Ardyan Prima Wardhana;Christina Avanti
    • Clinical and Experimental Vaccine Research
    • /
    • v.12 no.3
    • /
    • pp.224-231
    • /
    • 2023
  • Purpose: The Sinovac and AstraZeneca vaccines are the primary coronavirus disease 2019 vaccines in Indonesia. Antibody levels in vaccine-injected individuals will decline substantially over time, but data supporting the duration of such responses are limited. Therefore, this study aims to quantitatively evaluate antibody responses resulting from the completion of Sinovac and AstraZeneca administration in Indonesian adults. Materials and Methods: Participants were divided into two groups based on their vaccine type. Both groups were then assessed on the anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor binding domain (anti-SRBD) concentrations. The anti-SRBD level was measured using Elecsys anti-SARS-CoV-2 S assay and analyzed every month until 3 months after the second vaccination. Results: The results presented significant differences (p=0.000) in immunoglobulin G (IgG) titers among the vaccines' measurement duration, where all samples observed a decrease in IgG titers over time. The mean titer levels of anti-SRBD IgG in the group given Sinovac were high in the first month after vaccination and decreased by 55.7% in 3 months. AstraZeneca showed lesser immune response with a slower decline rate. Adverse effects following immunization (AEFI) showed that systemic reactions are the most reported in both vaccines, with a higher percentage in the second dose of AstraZeneca type vaccines. Conclusion: Sinovac induced more significant titers of anti-SRBD IgG 1 month after the second dose but generated fewer AEFIs. In contrast, AstraZeneca generated more AEFIs, in mild to moderate severity, but provided lower levels of anti-SRBD IgG.

Studies on Scintillation Proximity Assay for the mesurement of alpha-hCG (Alpha-hCG 측정을 위한 섬광 근접 측정법 (Scintillation Proximity Assay)에 관한 연구)

  • Choi, Tae-Hyun;Lim, Sang-Moo;Choi, Chang-Woon;Chung, Wee-Sup;Lim, Soo-Jeong;Lee, Su-Jin;Lee, Tae-Sup;Awh, Ok-Doo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.2
    • /
    • pp.133-139
    • /
    • 2002
  • Purpose: Scintillation Proximity Assay (SPA) does not require the physical separation of receptor bound form from free form. SPA was applied to the study of interaction of human chorionic gonadotropin (hCG) and $anti-{\alpha}$ hCG in serum. Materials and methods: $Anti-{\alpha}$ hCG was biotinylated for the binding to streptavidin. The assay was based on the simple competitive binding method between $[^{125}I]hCG$ and the hCG in sample serum, with $anti-{\alpha}$ hCG-coated beads. Aliquots of biotinylated $anti-{\alpha}$ hCG were dispensed into scintillation vials containing $100{\mu}{\ell}\;[^125}I]hCG\;and\;200{\mu}{\ell}$ of either a standard concentration of hCG for preparation of standard curve or unknown sample, and incubated for 20 min. at room temperature. Then $20{\mu}{\ell}$ streptavidin-coated beads were added to vials, and finally incubated for 10 min at room temperature. Values for unknown samples were then calculated from the standard curve. Results: Optimal background counts were certificated using varied radioactivity of radionuclides. Appropriate standard curve was obtained from SPA method successively, and the concentration of hCG from unknown serum was determined by standard curve. The result from SPA assay was similar to that of RIA. Conclusion: This observation confirms that SPA method could be useful for clinical diagnosis.

miR-140 inhibits porcine fetal fibroblasts proliferation by directly targeting type 1 insulin-like growth factor receptor and indirectly inhibiting type 1 insulin-like growth factor receptor expression via SRY-box 4

  • Geng, Hongwei;Hao, Linlin;Cheng, Yunyun;Wang, Chunli;Wei, Wenzhen;Yang, Rui;Li, Haoyang;Zhang, Ying;Liu, Songcai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.10
    • /
    • pp.1674-1682
    • /
    • 2020
  • Objective: This study aimed to elucidate the effect of miR-140 on the proliferation of porcine fetal fibroblasts (PFFs) and identify the target genes of miR-140 in PFFs. Methods: In this study, bioinformatics software was used to predict and verify target genes of miR-140. Quantitative polymerase chain reaction and western blot were used to detect the relationship between miR-140 and its target genes in PFFs. Dual luciferase reporter gene assays were performed to assess the interactions among miR-140, type 1 insulin-like growth factor receptor (IGF1R), and SRY-box 4 (SOX4). The effect of miR-140 on the proliferation of PFFs was measured by CCK-8 when PFFs were transfected with a miR-140 mimic or inhibitor. The transcription factor SOX4 binding to promoter of IGF1R was detected by chromatin immunoprecipitation assay (ChIP). Results: miR-140 directly targeted IGF1R and inhibited proliferation of PFFs. Meanwhile, miR-140 targeted transcription factor SOX4 that binds to promoter of porcine IGF1R to indirectly inhibit the expression of IGF1R. In addition, miR-140 inhibitor promoted PFFs proliferation, which is abrogated by SOX4 or IGF1R knockdown. Conclusion: miR-140 inhibited PFFs proliferation by directly targeting IGF1R and indirectly inhibiting IGF1R expression via SOX4, which play an important role in the development of porcine fetal.

Oncomodulin/Truncated Protamine-Mediated Nogo-66 Receptor Small Interference RNA Delivery Promotes Axon Regeneration in Retinal Ganglion Cells

  • Cui, Zhili;Kang, Jun;Hu, Dan;Zhou, Jian;Wang, Yusheng
    • Molecules and Cells
    • /
    • v.37 no.8
    • /
    • pp.613-619
    • /
    • 2014
  • The optic nerve often suffers regenerative failure after injury, leading to serious visual impairment such as glaucoma. The main inhibitory factors, including Nogo-A, oligodendrocyte myelin glycoprotein, and myelin-associated glycoprotein, exert their inhibitory effects on axonal growth through the same receptor, the Nogo-66 receptor (NgR). Oncomodulin (OM), a calcium-binding protein with a molecular weight of an ~12 kDa, which is secreted from activated macrophages, has been demonstrated to have high and specific affinity for retinal ganglion cells (RGC) and promote greater axonal regeneration than other known polypeptide growth factors. Protamine has been reported to effectively deliver small interference RNA (siRNA) into cells. Accordingly, a fusion protein of OM and truncated protamine (tp) may be used as a vehicle for the delivery of NgR siRNA into RGC for gene therapy. To test this hypothesis, we constructed OM and tp fusion protein (OM/tp) expression vectors. Using the indirect immunofluorescence labeling method, OM/tp fusion proteins were found to have a high affinity for RGC. The gel shift assay showed that the OM/tp fusion proteins retained the capacity to bind to DNA. Using OM/tp fusion proteins as a delivery tool, the siRNA of NgR was effectively transfected into cells and significantly down-regulated NgR expression levels. More importantly, OM/tp-NgR siRNA dramatically promoted axonal growth of RGC compared with the application of OM/tp recombinant protein or NgR siRNA alone in vitro. In addition, OM/tp-NgR siRNA highly elevated intracellular cyclic adenosine monophosphate (cAMP) levels and inhibited activation of the Ras homolog gene family, member A (RhoA). Taken together, our data demonstrated that the recombinant OM/tp fusion proteins retained the functions of both OM and tp, and that OM/tp-NgR siRNA might potentially be used for the treatment of optic nerve injury.

Development of an Improved Menopausal Symptom-Alleviating Licorice (Glycyrrhiza uralensis) by Biotransformation Using Monascus albidulus

  • Kim, Kang Uk;Lee, Sung-Jin;Lee, Inhyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.178-186
    • /
    • 2020
  • Licorice (Glycyrrhiza uralensis) contains several compounds that have been reported to alleviate menopausal symptoms via interacting with estrogen receptors (ERs). The compounds exist mainly in the form of glycosides, which exhibit low bioavailability and function. To bioconvert liquiritin and isoliquiritin, the major estrogenic compounds, to the corresponding deglycosylated liquiritigenin and isoliquiritigenin, respectively, licorice was fermented with Monascus, which has been demonstrated to deglycosylate other substances. The contents of liquiritigenin and isoliquiritigenin in Monascus-fermented licorice increased by 10.46-fold (from 38.03 μM to 379.75 μM) and 12.50-fold (from 5.53 μM to 69.14 μM), respectively, compared with their contents in non-fermented licorice. Monascus-fermented licorice exhibited 82.5% of the ERβ binding activity of that observed in the positive control (17 β-estradiol), whereas the non-fermented licorice exhibited 54.1% of the binding activity in an in vivo ER binding assay. The increase in the ERβ binding activity was associated with increases in liquiritigenin and isoliquiritigenin contents. Liquiritigenin acts as a selective ligand for ERβ, which alleviates menopausal symptoms with fewer side effects, such as heart disease and hypertension, compared with a ligand for ERα. In addition, Monascus-fermented licorice contained 731 mg/kg of monacolin K, one of the metabolites produced by Monascus that reduces serum cholesterol. Therefore, Monascus-fermented licorice is a promising material for the prevention and treatment of menopausal syndrome with fewer side effects.

Anti-obesity effect of Amomum taso-ko ethanol extract in 3T3-L1 adipocytes (3T3-L1 지방세포에서 초과 에탄올 추출물의 항비만 효과)

  • Lee, Jung A;Park, Young Jin;Jeong, Wonsik;Hong, Seong Su;Ahn, Eun-Kyung
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.1
    • /
    • pp.23-28
    • /
    • 2017
  • Amomum tsao-ko used as a traditional oriental herbal medicine, is indigenous to several Asia countries. In this study, we investigated anti-obesity activity of the ethanol extract of Amomum Taso-ko (A. tsao-ko). The ethanol extract of A. tsao-ko inhibited adipocyte differentiation using Oil Red O assay in 3T3-L1 cells. Inhibitory effect of the ethanol extract of A. tsao-ko on adipogenesis was modulated by down-regulation adipogenic transcriptional factor such as peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$), CCAAT-enhancer-binding protein ${\alpha}$ ($C/EBP{\alpha}$) and suppressed expression of fatty acid synthase, aP2, and resistin. We demonstrated that A. tsao-ko significantly inhibited adipogenesis and reduced $PPAR{\gamma}$ and $C/EBP{\alpha}$ expression in a dose-dependent manner. These results suggest that A. tsao-ko has an anti-obesity effect by inhibition of adipogenic transcription factor and adipocyte-specific genes in 3T3-L1 cells.