• 제목/요약/키워드: receptor activator of NF-kB ligand (RANKL)

검색결과 56건 처리시간 0.02초

Oral Administration of Mice with Cell Extracts of Recombinant Lactococcus lactis IL1403 Expressing Mouse Receptor Activator of NF-kB Ligand (RANKL)

  • Xuan, Biao;Park, Jongbin;Lee, Geun-Shik;Kim, Eun Bae
    • 한국축산식품학회지
    • /
    • 제42권6호
    • /
    • pp.1061-1073
    • /
    • 2022
  • Receptor activator of NF-kB ligand (RANKL) is known to play a major role in bone metabolism and the immune system, and its recombinant form has been expressed in bacterial systems for research since the last two decades. However, most of these recombinant forms are used after purification or directly using living cells. Here, there were cell extracts of recombinant Lactococcus lactis expressing mouse RANKL (mRANKL) used to evaluate its biological activity in mice. Mice were divided into three groups that were fed phosphate-buffered saline (PBS), wild-type L. lactis IL1403 (WT_CE), and recombinant L. lactis expressing mRANKL (mRANKL_CE). The small intestinal transcriptome and fecal microbiome were then profiled. The biological activity of mRANKL_CE was confirmed by studying RANK-RANKL signaling in vitro and in vivo. For small intestinal transcriptome, differentially expressed genes (DEGs) were identified in the mRANKL_CE group, and no DEGs were found in the WT_CE group. In the PBS vs. mRANKL_CE gene enrichment analysis, upregulated genes were enriched for heat shock protein binding, regulation of bone resorption, and calcium ion binding. In the gut microbiome analysis, there were no critical changes among the three groups. However, Lactobacillus and Sphingomonas were more abundant in the mRANKL_CE group than in the other two groups. Our results indicate that cell extracts of mRANKL_CE can play an effective role without a significant impact on the intestine. This strategy may be useful for the development of protein drugs.

Receptor activator of nuclear factor-κB ligand in T cells and dendritic cells communication

  • Nam, Sun-Young;Jeong, Hyun-Ja
    • 셀메드
    • /
    • 제3권1호
    • /
    • pp.3.1-3.3
    • /
    • 2013
  • The receptor activator of NF-${\kappa}B$ ligand (RANKL), a member of the tumor necrosis factor ligand family, has extensive functions beyond osteoclast development. RANKL is expressed in many immune cells such as osteoblasts, osteocytes, marrow stromal cells, activated T cells, synovial cells, keratinocytes, and mammary gland epithelial cells as well as in various tissues. The ligation of RANK by RANKL promotes dendritic cells (DCs) survival through prosurvival signals and the up-regulation of the anti-apoptotic proteins Bcl-2 and Bcl-$x_L$ and plays a crucial role in DCs-mediated Th1 differentiation. Therefore, RANKL plays an important role in the regulation of DCs/T cells-mediated specific immunity. This review will briefly inform our current understanding of the role of RANKL signaling in T cells-DCs communication in the immune system.

Smooth muscle cell 증식에 있어 NF-κ ligand의 receptor activator의 역할 (The Role of Receptor Activator of NF-κ Ligand in Smooth Muscle Cell Proliferation)

  • 김현주
    • 생명과학회지
    • /
    • 제16권6호
    • /
    • pp.1066-1070
    • /
    • 2006
  • Smooth muscle cell (SMC)의 증식은 혈관성장에 의한 질환의 발병기전의 중요한 요소이다. 혈관 손상 후 SMC의 성장조절에 대한 분자적 기작에 대한 연구는 치료제 개발에 있어 중요한 의미를 지닌다. 이에, 본 연구에서는 TNF family인 RANKL가 SMC의 증식을 촉진함을 입증하였다. RANKL는 p21의 발현을 감소시키고 p21의 promoter활성을 저해함으로써 SMC의 성장을 증가시켰다. 또한 ERK와 p38 MAPK의 활성이 RANKL에 의해 증가하였으며, ERK/p38의 저해제는 RANKL에 의해 유도되는 SMC의 성장을 완전히 억제하였다. 이러한 결과는 ERK와 p38 MAPK가 RANKL에 의해 유도되는 SMC의 증식에 중요한 역할을 함을 보여주는 것이다. 즉, RANK-RANKL-ERK/p38이 SMC의 증식을 매개하는 중요 분자이며, 이들 분자는 혈관 질환을 막는 새로운 치료제 개발의 표적분자가 될 수 있음이 입증되었다.

NFATc1 and NFATc3 is Involved in the Expression of Receptor Activator of NF-${\kappa}B$ Ligand in Activated T Lymphocytes

  • Heo, Sun-Jae;Park, Hyun-Jung;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • 제38권1호
    • /
    • pp.37-42
    • /
    • 2013
  • Receptor activator of NF-${\kappa}B$ ligand (RANKL) is an essential cytokine for osteoclast differentiation, activation and survival. T lymphocytes such as $T_{17}$ cells, a subset of T helper cells that produce IL-17, play an important role in rheumatoid arthritic bone resorption by producing inflammatory cytokines and RANKL. It has not yet been clearly elucidated how T cell activation induces RANKL expression. T cell receptor activation induces the activation of nuclear factor of activated T cell (NFAT) and expression of its target genes. In this study, we examined the role of NFAT in T cell activation-induced RANKL expression. EL-4, a murine T lymphocytic cell line, was used. When T cell activation was induced by phorbol 12-myristate 13-acetate (PMA) and ionomycin, RANKL expression increased in a time-dependent manner. In the presence of cyclosporin, an inhibitor of NFAT activation, this PMA/ionomycin-induced RANKL expression was blocked. Overexpression of either NFATc1 or NFATc3 induced RANKL expression. Chromatin immunoprecipitation results demonstrated that PMA/ionomycin treatment induced the binding of NFATc1 and NFATc3 to the mouse RANKL gene promoter. These results suggest that NFATc1 and NFATc3 mediates T cell receptor activation-induced RANKL expression in T lymphocytes.

RAW 264.7 세포에서 sulforaphane의 파골세포형성 저해효과 (Effects of Sulraphane on Osteoclastogenesis in RAW 264.7)

  • 황준호;이미란;강창희;부희정
    • 농업생명과학연구
    • /
    • 제50권2호
    • /
    • pp.151-160
    • /
    • 2016
  • 염증성 사이토카인은 파골세포형성과정에서 중요한 요인이며, 뼈의 흡수는 자주 골다공증과 연결된다. 설포라판은 보로콜리의 화뢰로 부터 분리된 물질로 염증성 사이토카인을 억제한다고 알려져 있다. 본 실험에서는 Receptor activator of nuclear factor kappaB ligand(RANKL)로 자극된 세포에서 설포라판이 파골세포 형성 억제에 대한 효과를 측정하였다. 설포라판은 대식세포인 RAW 264.7 세포에서 파골세포 특이 마커 유전자인 tartrate-resistant acid phosphatase(TRAP), Cathepsin K, matrix metalloproteinase 9(MMP-9), calcitonin receptor을 저해하였으며, TRAP, MMP-9, tumor necrosis factor receptor-associated factor 6(TRAF6)와 전사인자인 nuclease factor of activated T cells(NFATc1)의 단백질 발현과 RANKL로 자극하였을 때 전자인사인 nuclear factor kappaB(NF-kappaB)의 전사활성도 억제 하였다. 이와 같은 결과로 설포라판이 NF-kappaB의 전사활성 억제뿐만 아니라, 파골세포형성인자(TRAP, cathepsin K, MMP-9, calcitonin, NFATc1)와 NFATc1의 발현을 억제시키는 효과가 있음을 확인하였다.

cAMP-response Element-binding Protein Is not Essential for Osteoclastogenesis Induced by Receptor Activator of NF-${\kappa}B$ Ligand

  • Kim, Ha-Neui;Ha, Hyun-Il;Lee, Jong-Ho;Kwak, Han-Bok;Kim, Hong-Hee;Lee, Zang-Hee
    • International Journal of Oral Biology
    • /
    • 제30권4호
    • /
    • pp.143-148
    • /
    • 2005
  • Osteoclasts are multinucleated cells with bone resorbing activity and differentiated from hematopoietic cell lineages of monocyte/macrophages in the presence of receptor activator of NF-${\kappa}B$ ligand (RANKL) and M-CSF. However, the exact molecular mechanisms through which RANKL stimulates osteoclastogenesis remain to be elucidated. Here we report that activation of cAMP-response elementbinding protein (CREB) is not involved in osteoclastogenesis from osteoclast precursors in response to RANKL. RANKL induced CREB activation in osteoclast precursors. Using pharmacological inhibitors, we found that RANKL-induced CREB activation is dependent on p38 MAPK pathways. We also found that ectopic expressions of wild type and dominant negative forms of CREB in osteoclast precursors did not affect RANKL-induced osteoclast formation and bone resorbing activity. Furthermore, dominant negative forms of CREB did not alter the expression levels of osteoclast-specific marker genes. Taken together, these data suggest that CREB is dispensable for differentiation and resorbing activity of osteoclasts.

Actin-binding LIM protein 1 regulates receptor activator of NF-κB ligand-mediated osteoclast differentiation and motility

  • Jin, Su Hyun;Kim, Hyunsoo;Gu, Dong Ryun;Park, Keun Ha;Lee, Young Rae;Choi, Yongwon;Lee, Seoung Hoon
    • BMB Reports
    • /
    • 제51권7호
    • /
    • pp.356-361
    • /
    • 2018
  • Actin-binding LIM protein 1 (ABLIM1), a member of the LIM-domain protein family, mediates interactions between actin filaments and cytoplasmic targets. However, the role of ABLIM1 in osteoclast and bone metabolism has not been reported. In the present study, we investigated the role of ABLIM1 in the receptor activator of $NF-{\kappa}B$ ligand (RANKL)-mediated osteoclastogenesis. ABLIM1 expression was induced by RANKL treatment and knockdown of ABLIM1 by retrovirus infection containing Ablim1-specific short hairpin RNA (shAblim1) decreased mature osteoclast formation and bone resorption activity in a RANKL-dose dependent manner. Coincident with the downregulated expression of osteoclast differentiation marker genes, the expression levels of c-Fos and the nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), critical transcription factors of osteoclastogenesis, were also decreased in shAblim1-infected osteoclasts during RANKL-mediated osteoclast differentiation. In addition, the motility of preosteoclast was reduced by ABLIM1 knockdown via modulation of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt/Rac1 signaling pathway, suggesting another regulatory mechanism of ABLIM1 in osteoclast formation. These data demonstrated that ABLIM1 is a positive regulator of RANKL-mediated osteoclast formation via the modulation of the differentiation and PI3K/Akt/Rac1-dependent motility.

PKCβ Positively Regulates RANKL-Induced Osteoclastogenesis by Inactivating GSK-3β

  • Shin, Jihye;Jang, Hyunduk;Lin, Jingjing;Lee, Soo Young
    • Molecules and Cells
    • /
    • 제37권10호
    • /
    • pp.747-752
    • /
    • 2014
  • Protein kinase C (PKC) family members phosphorylate a wide variety of protein targets and are known to be involved in diverse cellular signaling pathways. However, the role of PKC in receptor activator of NF-${\kappa}B$ ligand (RANKL) signaling has remained elusive. We now demonstrate that $PKC{\beta}$ acts as a positive regulator which inactivates glycogen synthase kinase-$3{\beta}$ (GSK-$3{\beta}$) and promotes NFATc1 induction during RANKL-induced osteoclastogenesis. Among PKCs, $PKC{\beta}$ expression is increased by RANKL. Pharmacological inhibition of $PKC{\beta}$ decreased the formation of osteoclasts which was caused by the inhibition of NFATc1 induction. Importantly, the phosphorylation of GSK-$3{\beta}$ was decreased by $PKC{\beta}$ inhibition. Likewise, down-regulation of $PKC{\beta}$ by RNA interference suppressed osteoclast differentiation, NFATc1 induction, and GSK-$3{\beta}$ phosphorylation. The administration of PKC inhibitor to the RANKL-injected mouse calvaria efficiently protected RANKL-induced bone destruction. Thus, the $PKC{\beta}$ pathway, leading to GSK-$3{\beta}$ inactivation and NFATc1 induction, has a key role in the differentiation of osteoclasts. Our results also provide a further rationale for $PKC{\beta}$'s therapeutic targeting to treat inflammation-related bone diseases.

RANK Signaling Pathways and Key Molecules Inducing Osteoclast Differentiation

  • Lee, Na Kyung
    • 대한의생명과학회지
    • /
    • 제23권4호
    • /
    • pp.295-302
    • /
    • 2017
  • Mononuclear osteoclast precursors derived from hematopoietic progenitors fuse together and then become multinucleated mature osteoclasts by macrophage-colony stimulating factor (M-CSF) and receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL). Especially, the binding of RANKL to its receptor RANK provides key signals for osteoclast differentiation and bone-resorbing function. RANK transduces intracellular signals by recruiting adaptor molecules such as TNFR-associated factors (TRAFs), which then activate mitogen activated protein kinases (MAPKs), Src/PI3K/Akt pathway, nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and finally amplify NFATc1 activation for the transcription and activation of osteoclast marker genes. This review will briefly describe RANKL-RANK signaling pathways and key molecules critical for osteoclast differentiation.

Long Term Effect of High Glucose and Phosphate Levels on the OPG/RANK/RANKL/TRAIL System in the Progression of Vascular Calcification in rat Aortic Smooth Muscle Cells

  • Kang, Yang Ho;Jin, Jung Sook;Son, Seok Man
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권2호
    • /
    • pp.111-118
    • /
    • 2015
  • Osteoprotegerin (OPG), receptor activator of NF-${\kappa}B$ ligand (RANKL)/receptor activator of NF-${\kappa}B$ (RANK) axis, and TNF-related apoptosis-inducing ligand (TRAIL) participate in vascular calcification process including atherosclerosis, but their contributions under high glucose (HG) and phosphate (HP) condition for a long-term period (more than 2 weeks) have not been fully determined. In this study, we evaluated the effects of HG and HP levels over 2 or 4 weeks on the progression of vascular calcification in rat vascular smooth muscle cells (VSMCs). Calcium deposition in VSMCs was increased in medium containing HG (30 mmol/L D-glucose) with ${\beta}$-glycerophosphate (${\beta}$-GP, 12 mmol/L) after 2 weeks and increased further after 4 weeks. OPG mRNA and protein expressions were unchanged in HG group with or without ${\beta}$-GP after 2 weeks. However, after 4 weeks, OPG mRNA and protein expressions were significantly lower in HG group with ${\beta}$-GP. No significant expression changes were observed in RANKL, RANK, or TRAIL during the experiment. After 4 weeks of treatment in HG group containing ${\beta}$-GP and rhBMP-7, an inhibitor of vascular calcification, OPG expressions were maintained. Furthermore, mRNA expression of alkaline phosphatase (ALP), a marker of vascular mineralization, was lower in the presence of rhBMP-7. These results suggest that low OPG levels after long term HG and phosphate stimulation might reduce the binding of OPG to RANKL and TRAIL, and these changes could increase osteo-inductive VSMC differentiation, especially vascular mineralization reflected by increased ALP activity during vascular calcification.