• Title/Summary/Keyword: recentering capability

Search Result 8, Processing Time 0.015 seconds

Seismic Behavior and Recentering Capability Evaluation of Concentrically Braced Frame Structures using Superelastic Shape Alloy Active Control Bracing System (초탄성 형상기억합금 능동제어 가새시스템을 이용한 중심가새프레임 구조물의 지진거동 및 복원성능 평가)

  • Hu, Jong Wan;Rhee, Doo Jae;Joe, Yang Hee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.6
    • /
    • pp.1-12
    • /
    • 2012
  • The researches related to active control systems utilizing superelastic shape memory alloys (SMA) have been recently conducted to reduce critical damage due to lateral deformation after severe earthquakes. Although Superelastic SMAs undergo considerable inelastic deformation, they can return to original conditions without heat treatment only after stress removal. We can expect the mitigation of residual deformation owing to inherent recentering characteristics when these smart materials are installed at the part where large deformation is likely to occur. Therefore, the primary purpose of this research is to develop concentrically braced frames (CBFs) with superelastic SMA bracing systems and to evaluate the seismic performance of such frame structures. In order to investigate the inter-story drift response of CBF structures, 3- and 6-story buildings were design according to current design specifications, and then nonlinear time-history analyses were performed on numerical 2D frame models. Based on the numerical analysis results, it can be comparatively verified that the CBFs with superelastic SMA bracing systems have more structural advantages in terms of energy dissipation and recentering behavior than those with conventional steel bracing systems.

Cyclic behavior of extended end-plate connections with shape memory alloy bolts

  • Fanaie, Nader;Monfared, Morteza N.
    • Structural Engineering and Mechanics
    • /
    • v.60 no.3
    • /
    • pp.507-527
    • /
    • 2016
  • The use of shape memory alloys (SMAs) has been seriously considered in seismic engineering due to their capabilities, such as the ability to tolerate cyclic deformations and dissipate energy. Five 3-D extended end-plate connection models have been created, including one conventional connection and four connections with Nitinol bolts of four different prestress forces. Their cyclic behaviors have been investigated using the finite element method software ANSYS. Subsequently, the moment-rotation responses of the connections have been derived by subjecting them to cyclic loading based on SAC protocol. The results obtained in this research indicate that the conventional connections show residual deformations despite their high ductility and very good energy dissipation; therefore, they cannot be repaired after loading. However, while having good energy dissipation and high ductility, the connections equipped with Nitinol bolts have good recentering capability. Moreover, a connection with the mentioned specifications has been modeled, except that only the external bolts replaced with SMA bolts and assessed for seismic loading. The suggested connection shows high ductility, medium energy dissipation and very good recentering. The main objective of this research is to concentrate the deformations caused by cyclic loading on the connection in order to form super-elastic hinge in the connection by the deformations of the shape memory alloy bolts.

Seismic response of steel braced frames equipped with shape memory alloy-based hybrid devices

  • Salari, Neda;Asgarian, Behrouz
    • Structural Engineering and Mechanics
    • /
    • v.53 no.5
    • /
    • pp.1031-1049
    • /
    • 2015
  • This paper highlights the role of innovative vibration control system based on two promising properties in a parallel configuration. Hybrid device consists of two main components; recentering wires of shape memory alloy (SMA) and steel pipe section as an energy dissipater element. This approach concentrates damage in the steel pipe and prevents the main structural members from yielding. By regulation of the main adjustable design parameter, an optimum performance of the device is obtained. The effectiveness of the device in passive control of structures is evaluated through nonlinear time history analyses of a five-story steel frame with and without the hybrid device. Comparing the results proves that the hybrid device has a considerable potential to mitigate the residual drift ratio, peak absolute acceleration and peak interstory drift of the structure.

Optimum Design and Structural Application of the Bracing Damper System by Utilizing Friction Energy Dissipation and Self-Centering Capability (마찰 에너지 소산과 자동 복원력을 활용한 가새 댐퍼 시스템의 최적 설계와 구조적 활용)

  • Hu, Jong Wan;Park, Ji-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.377-387
    • /
    • 2014
  • This study mainly treats a new type of the bracing friction damper system, which is able to minimize structural damage under earthquake loads. The slotted bolt holes are placed on the shear faying surfaces with an intention to dissipate considerable amount of friction energy. The superelastic shape memory alloy (SMA) wire strands are installed crossly between two plates for the purpose of enhancing recentering force that are able to reduce permanent deformation occurring at the friction damper system. The smart recentering friction damper system proposed in this study can be expected to reduce repair cost as compared to the conventional damper system because the proposed system mitigates the inter-story drift of the entire frame structure. The response mechanism of the proposed damper system is firstly investigated in this study, and then numerical analyses are performed on the component spring models calibrated to the experimental results. Based on the numerical analysis results, the seismic performance of the recentering friction damper system with respect to recentering capability and energy dissipation are investigated before suggesting optimal design methodology. Finally, nonlinear dynamic analyses are conducted by using the frame models designed with the proposed damper systems so as to verify superior performance to the existing damper systems.

Mechanics of a variable damping self-centering brace: Seismic performance and failure modes

  • Xie, Xing-Si;Xu, Long-He;Li, Zhong-Xian
    • Steel and Composite Structures
    • /
    • v.31 no.2
    • /
    • pp.149-158
    • /
    • 2019
  • The force-deformation behavior, strain distribution and failure modes of a variable damping self-centering brace (VD-SCB) are theoretically analyzed, experimentally studied, and numerically simulated to guide its design. The working principle of the brace is explained by describing the working stages and the key feature points of the hysteretic curve. A large-scale brace specimen was tested under different sinusoidal excitations to analyze the recentering capability and energy dissipation. Results demonstrate that the VD-SCB exhibits a full quasi-flag-shaped hysteretic response, high ultimate bearing capacity, low activation force and residual deformation, and excellent recentering and energy dissipation capabilities. Calculation equations of the strain distribution in different parts of the brace are proposed and are compared with the experimental data and simulated results. The developments of two failure modes are compared. Under normal circumstances, the brace fails due to the yielding of the spring blocking plates, which are easily replaced to restore the normal operating conditions of the brace. A brief description of the design procedure of the brace is proposed for application.

Cyclic behavior of self-centering braces utilizing energy absorbing steel plate clusters

  • Jiawang Liu;Canxing Qiu
    • Steel and Composite Structures
    • /
    • v.47 no.4
    • /
    • pp.523-537
    • /
    • 2023
  • This paper proposed a new self-centering brace (SCB), which consists of four post-tensioned (PT) high strength steel strands and energy absorbing steel plate (EASP) clusters. First, analytical equations were derived to describe the working principle of the SCB. Then, to investigate the hysteretic performance of the SCB, four full-size specimens were manufactured and subjected to the same cyclic loading protocol. One additional specimen using only EASP clusters was also tested to highlight the contribution of PT strands. The test parameters varied in the testing process included the thickness of the EASP and the number of EASP in each cluster. Testing results shown that the SCB exhibited nearly flag-shape hysteresis up to expectation, including excellent recentering capability and satisfactory energy dissipating capacity. For all the specimens, the ratio of the recovered deformation is in the range of 89.6% to 92.1%, and the ratio of the height of the hysteresis loop to the yielding force is in the range of 0.47 to 0.77. Finally, in order to further understand the mechanism of the SCB and provide additional information to the testing results, the high-fidelity finite element (FE) models were established and the numerical results were compared against the experimental data. Good agreement between the experimental, numerical, and analytical results was observed, and the maximum difference is less than 12%. Parametric analysis was also carried out based on the validated FE model to evaluate the effect of some key parameters on the cyclic behavior of the SCB.

Temperature effect on seismic performance of CBFs equipped with SMA braces

  • Qiu, Canxing;Zhao, Xingnan
    • Smart Structures and Systems
    • /
    • v.22 no.5
    • /
    • pp.495-508
    • /
    • 2018
  • Shape memory alloys (SMAs) exhibit superelasticity given the ambient temperature is above the austenite finish temperature threshold, the magnitude of which significantly depends on the metal ingredients though. For the monocrystalline CuAlBe SMAs, their superelasticity was found being maintained even when the ambient temperature is down to $-40^{\circ}C$. Thus this makes such SMAs particularly favorable for outdoor seismic applications, such as the framed structures located in cold regions with substantial temperature oscillation. Due to the thermo-mechanical coupling mechanism, the hysteretic properties of SMAs vary with temperature change, primarily including altered material strength and different damping. Thus, this study adopted the monocrystalline CuAlBe SMAs as the kernel component of the SMA braces. To quantify the seismic response characteristics at various temperatures, a wide temperature range from -40 to $40^{\circ}C$ are considered. The middle temperature, $0^{\circ}C$, is artificially selected to be the reference temperature in the performance comparisons, as well the corresponding material properties are used in the seismic design procedure. Both single-degree-of-freedom systems and a six-story braced frame were numerically analyzed by subjecting them to a suite of earthquake ground motions corresponding to the design basis hazard level. To the frame structures, the analytical results show that temperature variation generates minor influence on deformation and energy demands, whereas low temperatures help to reduce acceleration demands. Further, attributed to the excellent superelasticity of the monocrystalline CuAlBe SMAs, the frames successfully maintain recentering capability without leaving residual deformation upon considered earthquakes, even when the temperature is down to $-40^{\circ}C$.

Shape memory alloy (SMA)-based Superelasticity-assisted Slider (SSS): an engineering solution for practical aseismic isolation with advanced materials

  • Narjabadifam, Peyman;Noori, Mohammad;Cardone, Donatello;Eradat, Rasa;Kiani, Mehrdad
    • Smart Structures and Systems
    • /
    • v.26 no.1
    • /
    • pp.89-102
    • /
    • 2020
  • Shape memory alloy (SMA)-based Superelasticity-assisted Slider (SSS) is proposed as an engineering solution to practically exploit the well-accepted advantages of both sliding isolation and SMA-based recentering. Self-centering capability in SSS is provided by austenitic SMA cables (or wire ropes), recently attracting a lot of interest and attention in earthquake engineering and seismic isolation. The cables are arranged in various novel and conventional configurations to make SSS versatile for aseismic design and retrofit of structures. All the configurations are detailed with thorough technical drawings. It is shown that SSS is applicable without the need for Isolation Units (IUs). IUs, at the same time, are devised for industrialized applications. The proof-of-concept study is carried out through the examination of mechanical behavior in all the alternative configurations. Force-displacement relations are determined. Isolation capabilities are predicted based on the decreases in seismic demands, estimated by the increases in effective periods and equivalent damping ratios. Restoring forces normalized relative to resisting forces are assessed as the criteria for self-centering capabilities. Lengths of SMA cables required in each configuration are calculated to assess the cost and practicality. Practical implementation is realized by setting up a small-scale IU. The effectiveness of SSS under seismic actions is evaluated using an innovative computer model and compared to those of well-known Isolation Systems (ISs) protecting a reference building. Comparisons show that SSS seems to be an effective IS and suitable for earthquake protection of both structural and non-structural elements. Further research aimed at additional validation of the system are outlined.