• Title/Summary/Keyword: receiver system

Search Result 2,972, Processing Time 0.032 seconds

Design of POCSAG Receiver Interface Circuits for Wireless Remote Control using Pager System (페이져 시스템을 이용한 무선 원격제어용 POCSAG 수신기 인터페이스회로 설계)

  • Lee, Jae-Min
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.3
    • /
    • pp.289-294
    • /
    • 2001
  • In this paper a POCSAG receiver interface circuit for wireless remote control using pager system is presented. SM8212A and AT89C51 chips are used for the core of system design. The proposed system is able to communicate with computers through RS-232C interface, which enables users to manage the data from the pager system on computers in real time. Analysis of SM8212A for Ole algorithm of CPU control program is described. The hardware is implemented on a PCB and the control program is made by C++ and assembly language. The performance of designed system is confirmed by experiments using the TESCOM equipments.

  • PDF

A Dual-Band Through-the-Wall Imaging Radar Receiver Using a Reconfigurable High-Pass Filter

  • Kim, Duksoo;Kim, Byungjoon;Nam, Sangwook
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.3
    • /
    • pp.164-168
    • /
    • 2016
  • A dual-band through-the-wall imaging radar receiver for a frequency-modulated continuous-wave radar system was designed and fabricated. The operating frequency bands of the receiver are S-band (2-4 GHz) and X-band (8-12 GHz). If the target is behind a wall, wall-reflected waves are rejected by a reconfigurable $G_m-C$ high-pass filter. The filter is designed using a high-order admittance synthesis method, and consists of transconductor circuits and capacitors. The cutoff frequency of the filter can be tuned by changing the reference current. The receiver system is fabricated on a printed circuit board using commercial devices. Measurements show 44.3 dB gain and 3.7 dB noise figure for the S-band input, and 58 dB gain and 3.02 dB noise figure for the X-band input. The cutoff frequency of the filter can be tuned from 0.7 MHz to 2.4 MHz.

Efficient LDPC-Based, Threaded Layered Space-Time-Frequency System with Iterative Receiver

  • Hu, Junfeng;Zhang, Hailin;Yang, Yuan
    • ETRI Journal
    • /
    • v.30 no.6
    • /
    • pp.807-817
    • /
    • 2008
  • We present a low-density parity-check (LDPC)-based, threaded layered space-time-frequency system with emphasis on the iterative receiver design. First, the unbiased minimum mean-squared-error iterative-tree-search (U-MMSE-ITS) detector, which is known to be one of the most efficient multi-input multi-output (MIMO) detectors available, is improved by augmentation of the partial-length paths and by the addition of one-bit complement sequences. Compared with the U-MMSE-ITS detector, the improved detector provides better detection performance with lower complexity. Furthermore, the improved detector is robust to arbitrary MIMO channels and to any antenna configurations. Second, based on the structure of the iterative receiver, we present a low-complexity belief-propagation (BP) decoding algorithm for LDPC-codes. This BP decoder not only has low computing complexity but also converges very fast (5 iterations is sufficient). With the efficient receiver employing the improved detector and the low-complexity BP decoder, the proposed system is a promising solution to high-data-rate transmission over selective-fading channels.

  • PDF

An Analysis of Receiving Sensitivity of PIN Receiver for Optical Communication System (광통신시스템의 PIN 수신기 수신감도 해석)

  • Kim, Sun-Yeob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2272-2278
    • /
    • 2011
  • It is essential to various evaluate about statistic character of the signal and additional noise for optimization of the optical communication system. We expressed various error probability with the m which was bandwidth and a bit numerical function and carried out performance evaluation of a PIN receiver. This research analyzed the receiving sensitivity of the PIN receiver and verified reception sensitivity through computer simulation in the optical communication system. As a result, the receiving sensitivity for PIN receiver are $9.2{\times}10^4$ photon/bit for given error probability.

Design and Evaluation of Real-time GNSS Attitude Determination Systems using Low Cost Receivers (저가형 수신기를 이용한 실시간 GNSS 자세결정 시스템 설계 및 성능 평가)

  • Chae, JeongGeun;Lee, DongSun;Kang, In-Suk;Park, Chansik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1259-1265
    • /
    • 2014
  • In this paper, the real-time attitude determination based Matlab using low-cost receivers was designed and evaluated. The GNSS attitude determination system was implemented to operation in real-time by TimerCallback in MATLAB. The TTM(Transmission Time Misalignment) of U-blox receiver was confirmed through zero baseline tests and this problem was revised. The computed attitude by the high-cost NovAtel receiver was compared to the computed attitude by the low-cost U-blox receiver. As a result of this, the performance of attitude determination systems by low-cost receiver was confirmed. To determine baseline, LAMBDA and BC-LAMBDA for integer ambiguities search methods were used. To confirm suitable integer ambiguity search method in real-time attitude determination algorithm, determined baselines by two methods were compared, and it was confirmed that BC-LAMBDA is more suitable. As a result of this, the operation of real-time attitude determination system was confirmed using 3 low-cost receivers.

A Two-antenna GPS Receiver Integrated with Dead Reckoning Sensors (Two-antenna 자세 결정용 GPS 수신기와 DR 센서의 통합 시스템)

  • 이재호;서홍석;성태경;박찬식;이상정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.186-186
    • /
    • 2000
  • In the GPS/DR integrated system, the GPS position(or velocity) is used to compensate the DR output and to calibrate errors in the DR sensor. This synergistic relationship ensures that the calibrated DR accuracy can be maintained even when the GPS signal is blocked. Because of the observability problem, however, the DR sensors are not sufficiently calibrated when the vehicle speed is low. This problem can be solved if we use a multi-antenna GPS receiver for attitude determination instead of conventional one. This paper designs a two-antenna GPS receiver integrated with DR sensors. The proposed integration system has three remarkable features. First, the DR sensor can be calibrated regardless of the vehicle speed with the aid of two-antenna GPS receiver. Secondly, the search space of integer ambiguities in GPS carrier-phase measurements is reduced to a part of the surface of the sphere using DR heading. Thirdly, the detection resolution of cycle-slips in GPS carrier-phase measurements is improved with the aid of DR heading. From the experimental result, it is shown that the search grace is drastically reduced to about 3120 of the non-aided case and the cycle-slips of 1 or half cycle can be detected.

  • PDF

ADC-Based Backplane Receivers: Motivations, Issues and Future

  • Chung, Hayun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.3
    • /
    • pp.300-311
    • /
    • 2016
  • The analog-to-digital-converter-based (ADC-based) backplane receivers that consist of a front-end ADC followed by a digital equalizer are gaining more popularity in recent years, as they support more sophisticated equalization required for high data rates, scale better with fabrication technology, and are more immune to PVT variations. Unfortunately, designing an ADC-based receiver that meets tight power and performance budgets of high-speed backplane link systems is non-trivial as both front-end ADC and digital equalizer can be power consuming and complex when running at high speed. This paper reviews the state of art designs for the front-end ADC and digital equalizers to suggest implementation choices that can achieve high speed while maintaining low power consumption and complexity. Design-space exploration using system-level models of the ADC-based receiver allows through analysis on the impact of design parameters, providing useful information in optimizing the power and performance of the receiver at the early stage of design. The system-level simulation results with newer device parameters reveal that, although the power consumption of the ADC-based receiver may not comparable to the receivers with analog equalizers yet, they will become more attractive as the fabrication technology continues to scale as power consumption of digital equalizer scales well with process.

An attitude determination GPS Receiver Integrated with Dead Reckoning Sensors (자세 결정용 GPS 수신기와 DR을 이용한 통합 시스템)

  • Lee, Jae-Ho;Seo, Hung-Seok;Sung, Tae-Kyung;Lee, Sang-Jeong
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.2
    • /
    • pp.72-79
    • /
    • 2001
  • In the GPS/DR integrated system, the GPS position(or velocity) is used to compensate the DR output and to calibrate errors of the DR sensor. This synergistic relationship ensures that the calibrated DR accuracy can be maintained even when the GPS signal is blocked. Because of the observability problem, however, the DR sensors are not sufficiently calibrated when the vehicle speed is low. This problem can be solved if we use a multi-antenna GPS receiver for attitude determination instead of conventional one. This paper designs a two-antenna GP receiver integrated with DR sensors. The proposed integration system has three remarkable features. First, the DR sensor can be calibrated regardless of the vehicle speed with the aid of two-antenna GPS receiver. Secondly, the search space of integer ambiguities in GPS carrier-phase measurements is reduced to a part of the surface of the sphere using DR heading. Thirdly, the detection resolution of cycle-slips in GPS carrier-phase measurements is improved with the aid of DR heading. From the experimental result, it is shown that the search space is drastically reduced to about 3/20 of the non-aided case and the cycle-slips of 1 or half cycle can be detected.

  • PDF

A study on the changes of the noise reception sensitivity in the optical system (광시스템의 잡음에 따른 수신감도 변화에 관한 연구)

  • Ra, Yoo-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.677-682
    • /
    • 2015
  • In this paper, we investigated the effect of light on the performance of the receiver system noise and external noise added from the ever-present influence in general optical system. And calculated the reception sensitivity of the receiver at the time of off-keying transmission - from the optical transmission system in consideration of the case that the photo detector has a quantum yield of less than one-one. Not less than 50 it was confirmed that it is possible to configure the low power system is calculated and compared with the case where less than 300 the receiver sensitivity of the optical system to maintain the standard error probability. However, even if these values were considered, and the preamplifier in the receiver, considering a case of using a low-output light source, so that a heavy burden in the value less than the actual system installation, using the light source having less than the output, as shown in Figure 3, the results that were obtained also may be used.

DEVELOPMENT OF THE 5GHZ CONTINUUM RECEIVER SYSTEM (5GHZ대 연속 전파 수신 시스템의 개발)

  • Byeon, Do-Yeong;Choi, Han-Gyu;Lee, Jeong-Won;Gu, Bon-Cheol
    • Publications of The Korean Astronomical Society
    • /
    • v.11 no.1
    • /
    • pp.109-123
    • /
    • 1996
  • We have developed a 5GHz continuum receiver system. The receiver is a direct type receiver. In order to reduce the noise due to the fluctuation of the gain in the amplifiers, the system employs the Dicke switching method. We made the 5GHz low-noise amplifier and the bandpass filter. The low-noise amplifier gives ${\sim}35dB$ gain and has ${\sim}210K$ noise temperature. The bandpass filter has a passband between 4.3 and 5.4GHz. We also made switch driver, video amplifiers, phase detector, and integrator. Using a 1.8 meter offset parabolic antenna, we measured the efficiency of the system. Since the antenna does not have a driver to track objects, observations were performed with the antenna fixed. The measured noise temperature of the system is ${\sim}650K$. From the observation of the blank sky, noise level was measured. It was found that the systematic noise(${\sim}0.5K$: peak to peak value) is much larger than the thermal noise. The systematic noise is possibly related to the stability of the DC power supplied to the receiver system. Besides the noise of the system, it was found that the airplanes are the very serious noise sources. We measured the radio flux of the Sun using the developed system. The observed radio flux of the Sun is ${\sim}10^6Jy$, which is close to the known value of the quiet Sun. The test observation of the Sun shows that the angular beam size of the antenna is ${\sim}2.2^{\circ}$.

  • PDF