• Title/Summary/Keyword: rebar inspection

Search Result 127, Processing Time 0.018 seconds

Splice Performance Evaluation of Fastening Coupler According to the Slope Length of Internal Fasteners (조임쇠 경사길이에 따른 체결식 커플러의 이음성능 평가)

  • Jung, Hyun-Suk;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.4
    • /
    • pp.11-19
    • /
    • 2022
  • In this study, in order to improve the splice performance of mechanical couplers, two new mechanical couplers with different connection modes were developed with rebar(SD400). The stress analysis of mechanical couplers with two different connection modes was carried out. Uniaxial tensile tests were carried out with type of steel, connection mode and the slope length of internal fastener as variables to analyze the influence on the maximum tensile strength. Building upon this previous work, the specimens that met the code in uniaxial tensile test were fabricated and static loading test and cyclic loading test were performed on the basis of Korean code(KS D 0249). The results of this research are as follows; (1) The tensile strength of steel and the slope length of internal fasteners have a certain influence on the maximum tensile strength. (2) The connection mode has some influence on the stiffness, slip and stiffness reduction rate of the connecting rebars. The results verify the feasibility of the proposed enhanced mechanical coupler in the field.

Improvement of Seismic Performance Evaluation Method for Concrete Dam Pier by Applying Maximum Credible Earthquake(MCE) (가능최대지진(MCE)을 적용한 콘크리트 댐 피어부 내진성능평가 방안 개선)

  • Jeong-Keun Oh;Yeong-Seok Jeong;Min-Ho Kwon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.1-12
    • /
    • 2023
  • This paper assesses the suitability of existing standards for plastic material models and performance level evaluation methods in seismic performance evaluations of concrete dam piers during Maximum Credible Earthquakes (MCE). Dynamic plastic analysis was conducted to examine the applicability of the plastic material model under various conditions. As a result reveal that when the minimum reinforcement ratio is not met, the average stress-average strain method recommended in current dam seismic performance evaluation guidelines tends to underestimate pier responses compared to the predicted outcomes of dynamic elastic analysis. Consequently, the paper proposes an improvement plan that treats dam piers with an insufficient minimum reinforcement ratio as unreinforced and integrates fracture energy into concrete tensile behavior characteristics for performance level evaluation. Implementing these improvements can lead to more conservative evaluation outcomes compared to current seismic performance evaluation methods.

A Experimental and Analytical Study on One directional Bond Behavior of Grid typed CFRP Reinforcement (격자형 탄소 보강재의 일방향 부착특성에 대한 실험 및 해석적 연구)

  • Chi Hoon Noh;Nak Seop Jang;Hongseob Oh
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.2
    • /
    • pp.77-86
    • /
    • 2024
  • In this study, authors attempted to determine the bond behavior characteristics to utilize Grid typed CFRP reinforcement as an alternative to steel rebar used as concrete reinforcement. Since it is difficult to understand the influence of the transverse grid length of the Grid typed CFRP reinforcement in the existing numerical analysis proposal for bond behavior, a nonlinear 3D model was created and finite element analysis was performed. To perform the analysis, the analysis was conducted by inputting a nonlinear material model and modeling the bond interface characteristics between the Grid typed CFRP reinforcement and concrete and comparing them with the actual direct pull-out test results. The bond behavior characteristics of the Grid typed CFRP reinforcement were found to be very dominated by the factors of the transverse grid, and showed a tendency to continuously increase load.

A Study on the Structural Behavior of LB-DECK Panel Considering Rebar-Arrangement in Site (현장 배근이 LB-DECK 패널의 구조거동에 미치는 영향)

  • Lho, Byeong-Cheol;Cho, Gyu-Dae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.3
    • /
    • pp.167-174
    • /
    • 2008
  • The objective of this study is to verify whether the composite action is sufficiently strong to withstand at the interface and the structural behavior of LB-DECK panel with field concrete slab strengthened with main reinforcing bars. Static and fatigue tests are performed for LB-DECK panels with varied shapes and amounts of rebars, and the results are compared with those of field concrete panel(FCP). The test results indicate that the LB-DECK panel with 1.5 times of more rebars inside significantly increase the overall stiffness. LB-DECK penel usually shows on average 52.1 percent of improved stiffness compared with the FCP. The fatigue test results also show that the LB-DECK panel can withstand two-million cycles of repeated loads without any damage.

A Case Study on Cause Analysis for Longitudinal Crack of Duct Slab in Tunnel (터널 덕트슬래브의 종방향 균열에 대한 원인 분석 사례 연구)

  • Park, Sung Woo;Park, Seung Su;Hwang, In Baek;Cha, Chul Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.19-28
    • /
    • 2012
  • In this study, cause of longitudinal crack which is found on duct slab of road tunnel is studied. In-depth investigation, such as visual inspection, non-destructive testing and geometrical surveying of duct slab, is carried out. In order to perform cause analysis, the investigated results are compared to the results of numerical analysis. Many factors, which cause longitudinal crack, are classified as constrained condition of the duct slab, location of the rebar, temperature, shrinkage and so on. According to the classified causes of longitudinal crack, numerical analysis is performed considering construction stage of the tunnel lining. Especially, in order to predict shrinkage stain due to discrepancy of curing date, ACI-209 model, KCI structural design code and other researcher's shrinkage test results are compared. The results show that shrinkage strain is one of the main factors causing longitudinal crack. Other investigated tunnels are classified along with the construction method of duct slab and patterns of cracks. As a result, improving ways to construct duct slab are suggested.

Line Laser Image Processing for Automated Crack Detection of Concrete Structures (콘크리트 구조물의 자동화 균열탐지를 위한 라인 레이저 영상분석)

  • Kim, Junhee;Shin, Yoon-Soo;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.3
    • /
    • pp.147-153
    • /
    • 2018
  • Cracking in concrete structure must be examined according to appropriate methods, to ensure structural serviceability and to prevent structural deterioration, since cracks opened wide for a long time expedite corrosion of rebar. A site investigation is conducted in a regular basis to monitor structural deterioration by tracking growing cracks. However, the visual inspection are labor intensive. and judgment are subject. To overcome the limit of the on-site visual investigation image processing for identifying the cracks of concrete structures by analyzing 2D images has been developed. This study develops a unique 3D technique utilizing a line laser and its projection image onto concrete surfaces. Automated process of crack detection is developed by the algorithms of automatizing crack map generation and image data acquisition. Performance of the developed method is experimentally evaluated.

The Effects of Cement Alkalinity upon the Pore Water Alkalinity and the Chloride Threshold Level of Reinforcing Steel in Concrete

  • Nam Jingak;Hartt William H.;Kim Kijoon
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.549-555
    • /
    • 2004
  • Cement of three alkalinities (equivalent alkalinities of 0.36,0.52 and 0.97) was employed in fabricating a set of classical G109 type specimens. To-date, these have been subjected to a one week wet-one week dry cyclic pending using 15 w/o NaCl solution. At the end of the dry period, potential and macro-cell current were measured to indicate whether the top reinforcing steel was in the passive or active state. Once this bar became active, the specimen was autopsied and the extent of corrosion was documented. Subsequent to visual inspection, concrete powder samples were collected from the upper region of the top rebar trace; and at a certain times concrete cores were taken from non-reinforced specimens. Using these, determinations were made of (1) critical chloride concentration for corrosion initiation ($Cl_{th}^-$), (2) effective chloride diffusion coefficient ($D_e$), and (3) pore water alkalinity ($[OH^-]$). The pore water alkalinity was strongly related to the alkali content of cement that was used in the mix. The chloride concentration, ($Cl^-$), was greater at active than at passive sites, presumably as a consequence of electro migration and accumulation of these species at active site subsequent to corrosion initiation. Accordingly, ($Cl^-$) at passive sites was considered indicative of the threshold concentration fur corrosion initiation. The $Cl_{th}^-$ was increased with increasing Time-to-corrosion ($T_i$). Consequently, the HA(High Alkalinity) specimens exhibited the highest $Cl_{th}^-$ and the NA(Normal Alkalinity) was the least. This range exceeds what has previously been reported in North America. In addition, the effective diffusion coefficient, $D_e$, was about 40 percent lower for concrete prepared with the HA cement compared to the NA and LA(Low Alkalinity) ones.

Development of Deep Learning-Based Damage Detection Prototype for Concrete Bridge Condition Evaluation (콘크리트 교량 상태평가를 위한 딥러닝 기반 손상 탐지 프로토타입 개발)

  • Nam, Woo-Suk;Jung, Hyunjun;Park, Kyung-Han;Kim, Cheol-Min;Kim, Gyu-Seon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.1
    • /
    • pp.107-116
    • /
    • 2022
  • Recently, research has been actively conducted on the technology of inspection facilities through image-based analysis assessment of human-inaccessible facilities. This research was conducted to study the conditions of deep learning-based imaging data on bridges and to develop an evaluation prototype program for bridges. To develop a deep learning-based bridge damage detection prototype, the Semantic Segmentation model, which enables damage detection and quantification among deep learning models, applied Mask-RCNN and constructed learning data 5,140 (including open-data) and labeling suitable for damage types. As a result of performance modeling verification, precision and reproduction rate analysis of concrete cracks, stripping/slapping, rebar exposure and paint stripping showed that the precision was 95.2 %, and the recall was 93.8 %. A 2nd performance verification was performed on onsite data of crack concrete using damage rate of bridge members.

Time Dependent Evaluation of Corrosion Free Life of Concrete Tunnel Structures Based on the Reliability Theory (해저 콘크리트 구조물의 신뢰성 이론에 의한 시간 의존적 내구수명 평가)

  • Pack, Seung Woo;Jung, Min Sun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.142-154
    • /
    • 2011
  • This study predicted the probability of corrosion initiation of reinforced concrete tunnel boxes structures using the Monte Carlo Simulation. For the inner wall and outer wall in the tunnel boxes, exposed to airborne chloride ion and seawater directly respectively, statistical values of parameters like diffusion coefficient D, surface chloride content $C_s$, cover depth c, and the chloride threshold level $C_{lim}$ were examined from experiment or literature review. Their average values accounted for $3.77{\times}10^{-12}m^2/s$, 3.0% by weight of cement, 94.7mm and 45.5mm for outer wall and inner wall, respectively, and 0.69% by weight of cement for D, $C_s$, c, and $C_{lim}$, respectively. With these parametric values, the distribution of chloride contents at rebar with time and the probability of corrosion initiation of the tunnel boxes, inner wall and outer wall, was examined by considering time dependency of chloride transport. From the examination, the histogram of chloride contents at rebar is closer to a gamma distribution, and the mean value increases with time, while the coefficient of variance decreases with time. It was found that the probability of corrosion initiation and the time to corrosion were dependent on the time dependency of chloride transport. Time independent model predicted time to corrosion initiation of inner wall and outer wall as 8 and 12 years, respectively, while 178 and 283 years of time to corrosion was calculated by time dependent model for inner wall and outer wall, respectively. For time independent model, the probability of corrosion at 100 years of exposure for inner wall and outer wall was ranged 59.5 and 95.5%, respectively, while time dependent model indicated 2.9 and 0.2% of the probability corrosion, respectively. Finally, impact of $C_{lim}$, including values specified in current codes, on the probability of corrosion initiation and corrosion free life is discussed.

An Evaluation of Flexural Behavior of Fume Pipe Repaired by Hybrid Concrete Repair Materials (하이브리드 콘크리트 보수재료로 보수된 흄관의 휨 거동 평가)

  • Yoo, Sung Won;Choi, Young Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.92-98
    • /
    • 2019
  • In this study, we developed a repair material incorporating PVA powder resin and nylon fiber into cemented carbide used in the existing field to improve adhesion performance and water tightness with existing concrete. Flexural behavior evaluation was performed. The main experimental variables were PVA powder resin, nylon fiber mixing rate and damage type, and performance tests were conducted to evaluate compressive strength and flexural behavior after repairing materials. It was found that all formulations fully satisfied the required performance of the repair material. The flexural strength test results of the repaired tube specimens showed that the performance of the repaired materials was maximized when the nylon fiber was added and the PVA powder was added in an appropriate amount. The flexural behavior of all the specimens showed the flexural behavior of the structural members with a low rebar ratio, suggesting that the amount of iron wire in the domestic fume pipe was somewhat insufficient. That is, it was confirmed that the amount of reinforcement of the steel wire was somewhat small, so that the concrete was cracked before the behavior of the concrete and the steel wire reached the extreme state, and the concrete was immediately destroyed beyond the tensile strength of the concrete.