• Title/Summary/Keyword: rebar construction method

Search Result 138, Processing Time 0.024 seconds

Experiment and Nonlinear Analysis of DH Beams with Steel Form (외부철판이 사용된 DH Beam의 휨거동에 대한 실험 및 비선형해석)

  • Moon, Jeong-Ho;Oh, Young-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.171-179
    • /
    • 2014
  • The purpose of this study is to evaluate the structural performance of DH beams. DH beam construction method uses thin steel plates as form-works and structural elements. The prefabricated plates and rebars of DH beams were transported to a construction site and erected for casting concrete at the site. In this study, the contribution of steel plates to the flexural strength was evaluated since the plates were expected to play a role as reinforcements. Five test specimens were made for experimental and analytical studies. They consisted of two DH beams for the positive moment test and two DH beams for the negative moment test and a RC beam for the comparison purpose. Test results on DH beams were compared with design equations and the RC beam test result. It was proven that DH beams demonstrated the good flexural behavior showing sufficient strengths and deformation capacities. Flexural strengths, principal strains of concrete, and rebar stresses were evaluated through nonlinear finite element analyses for two test beams. The analyses also showed that steel plates can contribute to the enhancement of flexural strength of DH beams. Based on experimental and analytical studies, it was concluded that steel plates of DH beams can be used as good flexural reinforcements.

Development of Precast Hollow Concrete Columns with Non-Shrink Mortar Grouting Type Splice Sleeve (무수축 모르타르 충진형 슬리브를 사용한 중공 프리캐스트 교각 개발)

  • Cho, Jae-Young;Lee, Young-Ho;Kim, Do-Hak;Park, Jong-Heon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.215-225
    • /
    • 2011
  • In general, the precast columns can obtain its homogeneous quality as they are produced in a factory with a hollow concrete block type by using high strength concrete, so that they can generate the reduction of dead load. Such a method of precast hollow concrete columns is already implemented in USA and Japan and used for connecting between blocks which use PC tendons. However, it is inevitable to have uneconomical construction with excessive cost in early stage when PC tendons are used. This study aims to develop an economical precast column with high quality and constructability which consists of only splice sleeve and general reinforcing bar without using PC tendons in order to reduce the construction period and cost. To achieve this goal, this study tested the performance of total 5 minimized models in the experiment with the variables such as hollowness, diameter of main reinforcement bar and cross-sectional size for the cross section of precast column by using grouting type splice sleeve which is a new type joint rebar. And it also verified the performance of column in the experiment for a large-sized model in order to overview its applicability by excluding large scale effect.

A Case Study on Cause Analysis for Longitudinal Crack of Duct Slab in Tunnel (터널 덕트슬래브의 종방향 균열에 대한 원인 분석 사례 연구)

  • Park, Sung Woo;Park, Seung Su;Hwang, In Baek;Cha, Chul Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.19-28
    • /
    • 2012
  • In this study, cause of longitudinal crack which is found on duct slab of road tunnel is studied. In-depth investigation, such as visual inspection, non-destructive testing and geometrical surveying of duct slab, is carried out. In order to perform cause analysis, the investigated results are compared to the results of numerical analysis. Many factors, which cause longitudinal crack, are classified as constrained condition of the duct slab, location of the rebar, temperature, shrinkage and so on. According to the classified causes of longitudinal crack, numerical analysis is performed considering construction stage of the tunnel lining. Especially, in order to predict shrinkage stain due to discrepancy of curing date, ACI-209 model, KCI structural design code and other researcher's shrinkage test results are compared. The results show that shrinkage strain is one of the main factors causing longitudinal crack. Other investigated tunnels are classified along with the construction method of duct slab and patterns of cracks. As a result, improving ways to construct duct slab are suggested.

Physical and Chemical Properties of Chlorine Bypass System-Dust from Cement Manufacturing (시멘트 생산 시 발생하는 Chlorine Bypass System-dust의 물리 및 화학적 특성)

  • Han, Min-Cheol;Lee, Dong-Joo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.310-315
    • /
    • 2019
  • This study conducted a series of studies to find alternative ways to use Chlorine Bypass System-dust(CBS-dust) in cement production. The results of engineering characteristics of CBS-dust are summarized as follows. First of all, the density of CBS-dust is 2.40, lighter than cement and the pH was 12.50 which was strong alkaline. In terms of particle size, it was 11.70 ㎛ which was finer than cement. With chemical properties, calcium oxide(CaO) was the highest as 35.10%, potassium oxide(K2O) was 32.43%, potassium chloride(KCl) was 19.46%, sulfur oxide(SO3) was 6.81%, and the remaining chemical components are SiO2, Fe2O3, Al2O3, MgO, and the like. Therefore, if CBS-dust is used as early-strength chemical admixtures in the concrete secondary products that use a large amount of mineral admixtures without rebar, it can be an effective method for increasing the strength of concrete as an alkali activator and preventing early-frost damage of Cold Weather Concrete.

Impact Evaluation of Water Footprint on Stages of Drainage Works (배수공 각 작업 단계별 물발자국 영향평가)

  • Chen, Di;Kim, Joon-Soo;Batagalle, Vinuri;Kim, Byung-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.225-231
    • /
    • 2020
  • Fresh water that can be used by a person of the total amount of water on the planet is increased because it is less than 0.01 % except underground water, ice and snow, etc. water management response need. In order to protect and efficiently utilize water resources, major countries are conducting water footprint studies that can quantitatively estimate the amount of water put into the operating phase of the resource harvesting phase, mainly agriculture. Korea has also recently developed a number of policies in order to cope with water shortages, and in the construction industry, as well as the need for basic research to support it has been emphasized. This study was constructed DB up to the raw material harvesting step, the transport step, the production stage in order to estimate the water consumption of resources to be put into the work process to target the drainage of the road. Water usage estimation method was utilized the method presented in the Water Footprint Manual and the environmental score card certification guide, unit water usage each drainage main method was calculated after estimating the water footprint considering the water character factor, indirect water and the direct water, the water consumption factor of material input to each process. Brown asphalt, rebar, remicon of the drainage material as a result of the water footprint calculation accounted for 97 % of the total. Drainage method is a culvert, a side channel, a culvert wing wall, reinforced concrete open channel accounted for 92.2 % of the total. Drainage total step-by-step calculated water consumption and water footprint was found in order of raw material harvesting step, transport stage, production stage. Water footprint each drainage method or total drainage material calculated in this study can be used as a base data in the agricultural and construction sectors. In order to increase the reliability of the analysis, it is believed that further overseas databases will be needed for continuous review and research.

Analytical Study on Seismic Performance Assesment of Reinforced Concrete Shear Wall using High-Strength Reinforcing Bar (고강도 철근을 적용한 철근콘크리트 전단벽체의 내진성능평가를 위한 해석적 연구)

  • Cheon, Ju-Hyun;Kim, Kyung-Min;Park, Kwang-Min;Shin, Hyun-Mock
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.138-145
    • /
    • 2017
  • The purpose of this study is to establish a reasonable analytical method for the estimation of overall behavior characteristic from cracking to yielding of rebar and crushing of concrete and seismic performance of reinforced concrete shear wall with high-strength reinforcing bar. A total of 8 specimens of reinforced concrete walls which have constant aspect ratio and a variety of variables such as reinforcement ratio, reinforcement yielding strength, reinforcement details, concrete design strength, section shape and whether lateral restraint hoop were selected and the analysis was performed by using a non-linear finite element analysis program (RCAHEST) applying the proposed constitutive equation by the authors. The mean and coefficient of variation for maximum load from the experiment and analysis results was predicted 1.04 and 8%. The mean and coefficient of variation for displacement corresponding maximum load from the experiment and analysis results was predicted 1.17 and 19% respectively. The analytical results were predicted relatively well the fracture mode and the overall behavior until fracture for all specimens. These results are expected to be used as basic data for application of high-strength reinforcing bar to design codes in the future.

Development and Evaluation of Hollow-head Precast Reinforced Concrete Pile (말뚝머리 중공 프리캐스트 철근콘크리트 말뚝의 성능 평가)

  • Bang, Jin-Wook;Hyun, Jung-Hwan;Ahn, Kyung-Chul;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.130-137
    • /
    • 2017
  • Due to the economic growth and development of construction technology, a role of foundation to resist heavy loads has been increased. In this present study to improve the structural performance of reinforced concrete pile, the precast HPC pile reinforced with rebar and filling concrete was developed and the strength of pile was predicted based on the limit state design method. The safety of HPC pile strength was evaluated by comparing with the design values. The geometry of HPC pile is a decagon cross section with a maximum width of 500 mm and a minimum width of 475 mm, and the hollow head of pile thickness is 70 mm. The inner area of the hollow head part was made as the square ribbed shape presented in the limit state design code in order to achieve horizontal shear strength between pile concrete and filling concrete. From the shear test results, it was found that the stable shear strength were secured without abrupt failure until maximum load stage despite the shear cracks was found. Shear strength is 135% and 119% higher than that of design value calculated from limit state design code. The driving test results of HPC pile according to the presence of additional reinforcement showed the outstanding crack resistance against impact loads condition. From the bending test results the flexural load between PHC pile and HPC pile was 1.51 times and 1.48 times higher than that of the design flexural load of conventional PHC pile.

Material Properties and Structural Characteristics on Flexure of Steel Fiber-Reinforced Ultra-High-Performance Concrete (강섬유 보강 초고성능 콘크리트의 재료특성 및 휨 거동 역학적 특성)

  • Kim, Kyoung-Chul;Yang, In-Hwan;Joh, Chang-Bin
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.177-185
    • /
    • 2016
  • This paper concerns the flexural behavior of steel fiber-reinforced ultra-high-performance concrete (UHPC) beams with compressive strength of 150 MPa. It presents experimental research results of hybrid steel fiber-reinforced UHPC beams with steel fiber content of 1.5% by volume and steel reinforcement ratio of less than 0.02. This study aims at investigating of compressive and tensile behavior of UHPC to perform a reasonable prediction for flexural capacity of UHPC beams. Tensile behavior modeling was performed using load-crack mouth opening displacement relationship obtained from bending test. The experimental results show that steel fiber-reinforced UHPC is in favor of cracking resistance and ductility of beams. The ductility indices range from 1.6 to 3.0, which means high ductility of hybrid steel fiber-reinforced UHPC. Test results and numerical analysis results for the moment-curvature relationship are compared. Though the numerical analysis results for the bending capacity of the UHPC beam without rebar is larger than test result, the overall comparative results show that the bending capacity of steel fiber-reinforced UHPC beams with compressive strength of 150 MPa can be predicted by using the established method in this paper.