• 제목/요약/키워드: rearing condition

검색결과 184건 처리시간 0.018초

담수산 백점충(Ichthyophthirius multifiliis)에 관한 연구 II. 백점충의 인위 감염 및 어체내 충체 발달상 (Studies on Ichthyophthirius multifiliis Fouquet, 1876 in Freshwater Fishes II. Experimental Infection and Development of I. multifiliis)

  • 지보영;김기홍;박수일;김이청
    • 한국어병학회지
    • /
    • 제11권1호
    • /
    • pp.51-60
    • /
    • 1998
  • 본 연구는 내수면 양식 어류에 백점충, Ichthyophthirius multifiliis를 인위 감염시켜 감염 특성 및 어체내 충체 발달상을 밝히고자 하였다. 어종별(무지개 송어, 메기, 이스라엘 잉어), 수온별($15^{\circ}C$, $18^{\circ}C$, $21^{\circ}C$) 및 충체 발달 단계별(trophont, protomont, theront) 인위 감염 시험 결과, 어종별로는 무지개 송어 시험구에서, 수온별로는 $18^{\circ}C$ 시험구에서 그리고 충체 발달 단계별로는 theront 시험구에서 양성적인 인위 감염을 확인할 수 있었다. 그리고 theront 농도별에 있어서는 어체당 1000개체의 theront가 감염을 양성적으로 유도할 수 있는 것으로 조사되었으며 어체당 1500개체 이상의 theront는 무지개 송어치어에 100%의 감염을 유도하였다. 수온 $18^{\circ}C$의 인위 감염된 무지개 송어에서 7일 동안 어체내 충체의 발달 과정을 조사한 결과, 충체는 시간이 경과함에 따라 연속적인 발달을 행하여 크기가 증대되었으며 감염 3일째부터는 성숙되는 것으로 확인되었다. 그리고 총체의 형태학적 변화는 감염 2일째에는 구부장치가 기능적으로 발달하기 시작한 것을 볼 수 있었고, 감염 4일째부터는 수축포가 현저히 발달되기 시작하였으며 감염 6일째는 이들의 수가 현저히 증가한 것을 확인할 수 있었다. 그리고 감염 기간이 경과함에 따라 충체는 숙주의 아가미 일차 새변의 입새 동맥쪽으로 이동하는 경향을 나타내었다.

  • PDF

넙치 인공종묘생산에 있어 막분리 여과 시스템을 이용한 수질환경의 개선 (Improvement of Water Quality Using Ultra Filtration System in Artificial Seed Production of Olive Flounder, Paralichthys olivaceus)

  • 정관식;안창범;오명주;지승철;유진형
    • 한국수산과학회지
    • /
    • 제35권6호
    • /
    • pp.639-643
    • /
    • 2002
  • 막분리여과 시스템을 이용한 수질환경의 조절과 인공종묘생산 어류의 성장에 미치는 영향을 조사하기 위하여 사육수의 수질분석, 세균상 조사 및 자어의 성장률 등을 조사하여 비교하였다. 실험구는 고압모래여과기구 (SFS)와 막분리여과시스템구 (WS)을 두었으며, 수질에 대해서는 pH, 염분도, $DO,\;SS,\;COD,\;NH_{4}^{+},\;NO_{2}^{-},\;NO^{-},\;DIN,\;DIP$를 분석하였다. 대부분의 분석항목에서는 SFS구와 UFS구에서 큰 차이가 없었으나, 염분도는 SFS구 $33.5\%_{cdot}$, UFS구 $30.2\%_{cdot}$이었으며, 55는 SFS구 15.5mL/L, 7.0mL/L으로써 염분도와 SS에 대해서는 낮은 값을 나타내었다. 세균상 및 총균수의 변동에서 자연해수의 $6{\times}10^{5}CFU/mL$은 SFS구에서 약 1/6의 비율로 낮아지고 9일째 이후 총균수와 Vibrio속이 급격히 증가하고 Acinetobacter속 및 Micrococcus속 세균이 급증하기 시작하였으나, UFS구에서는 Ajteromonas속 세균의 일부가 남아있는 것 이외에 실험기간 중 안정적인 세균상을 유지하였다 성장률은 SFS구가 전장 17.0mm (SGR 14.0)이었으며, UFS구가 18.8mm (SGR 14.3)로서 유의적으로 높은 성장을 나타내었다. 막분리여과시스뎀을 이용하여 무균해수를 종묘생산장에 공급하는 것은 수질환경의 안정과 제균효과에 의해 세균의 증식이 억제되므로 자치어의 사육환경이 안정적으로 유지되어 질 수 있는 것으로 판단된다.

한국에서 열대거세미나방 알기생벌 Telenomus remus Nixon (가칭: 밤나방검정알벌)[검정알벌과]의 첫 보고 및 생물적 특성 연구 (First report of Telenomus remus Nixon(Scelionidae), an egg parasitoid of Spodoptera frugiperda(J.E. Smith)(Noctuidae) in Korea and its biological characteristics)

  • 조점래;서보윤;최준열;이관석;서미자;김정환
    • 환경생물
    • /
    • 제40권2호
    • /
    • pp.187-198
    • /
    • 2022
  • 본 연구에서는 국내 옥수수 포장에서 채집한 열대거세미나방 알덩어리로부터 우화한 알기생벌을 형태 및 분자동정하여 검정알벌과(Scelionidae)의 Telenomus remus Nixon (1937) [(가칭)밤나방검정알벌]로 최초로 확인되었다. T. remus 성충의 수명 및 발육기간(알-성충까지)은 기주 종류 및 성별에 따른 차이가 없었다. T. remus 암컷 성충은 우화 후 바로 산란하고, 하루에 1~3개에서부터 최고 37개까지 산란하였으며, 우화 후 1~2일째 가장 많이 산란하였다. 총 산란수는 기주로 열대거세미나방 알을 사용하였을 경우 평균 118.4 (7.0~352.0)개, 담배거세미나방의 알에서는 평균 164.9 (5.0~372.0)개로 담배거세미나방 알을 사용하였을 때 산란수가 많았으나, 유의미한 차이는 없었다. T. remus의 산란 기주 선호도는 담배거세미나방>파밤나방>열대거세미나방 순으로 높았다. 기주 알의 나이에 따라 T. remus의 선호도가 달랐는데, 1~2일 된 알을 선호하였다. T. remus 자손의 암수 비율은 기주와 상관없이 암컷의 비율이 수컷보다 높았으며, 산란 초기에는 암컷 산자의 비율이 높다가 나이가 들수록 수컷 산자의 비율이 현저하게 높았다. 교미하지 않은 T. remus 암컷이 산란하여 부화한 경우, 100% 수컷 성충으로 arrhenotoky type의 단위생식을 보여주었으며, 교미하여 산란한 경우, 암수의 비율은 8.0 : 2.0로 암컷의 비율이 높았다. T. remus는 중복기생자(gregarious egg parasitoid)가 아닌 단독기생자(solitary egg parasitoid)로 판단된다. 본 연구에서 보고한 T. remus의 생물적 특성에 관한 연구 결과는 실험실 조건에서 대량생산을 위한 정보로 활용하거나 생물적방제 프로그램을 개발할 때 활용될 수 있을 것이다.

일본 어류 양식업의 발전과정과 산지교체에 관한 연구 : 참돔양식업을 사례로 (A study on Development Process of Fish Aquaculture in Japan - Case by Seabream Aquaculture -)

  • 송정헌
    • 수산경영론집
    • /
    • 제34권2호
    • /
    • pp.75-90
    • /
    • 2003
  • When we think of fundamental problems of the aquaculture industry, there are several strict conditions, and consequently the aquaculture industry is forced to change. Fish aquaculture has a structural supply surplus in production, aggravation of fishing grounds, stagnant low price due to recent recession, and drastic change of distribution circumstances. It is requested for us to initiate discussion on such issue as “how fish aquaculture establishes its status in the coastal fishery\ulcorner, will fish aquaculture grow in the future\ulcorner, and if so “how it will be restructured\ulcorner” The above issues can be observed in the mariculture of yellow tail, sea scallop and eel. But there have not been studied concerning seabream even though the production is over 30% of the total production of fish aquaculture in resent and it occupied an important status in the fish aquaculture. The objectives of this study is to forecast the future movement of sea bream aquaculture. The first goal of the study is to contribute to managerial and economic studies on the aquaculture industry. The second goal is to identify the factors influencing the competition between production areas and to identify the mechanisms involved. This study will examine the competitive power in individual producing area, its behavior, and its compulsory factors based on case study. Producing areas will be categorized according to following parameters : distance to market and availability of transportation, natural environment, the time of formation of producing areas (leaderㆍfollower), major production items, scale of business and producing areas, degree of organization in production and sales. As a factor in shaping the production area of sea bream aquaculture, natural conditions especially the water temperature is very important. Sea bream shows more active feeding and faster growth in areas located where the water temperature does not go below 13∼14$^{\circ}C$ during the winter. Also fish aquaculture is constrained by the transporting distance. Aquacultured yellowtail is a mass-produced and a mass-distributed item. It is sold a unit of cage and transported by ship. On the other hand, sea bream is sold in small amount in markets and transported by truck; so, the transportation cost is higher than yellow tail. Aquacultured sea bream has different product characteristics due to transport distance. We need to study live fish and fresh fish markets separately. Live fish was the original product form of aquacultured sea bream. Transportation of live fish has more constraints than the transportation of fresh fish. Death rate and distance are highly correlated. In addition, loading capacity of live fish is less than fresh fish. In the case of a 10 ton truck, live fish can only be loaded up to 1.5 tons. But, fresh fish which can be placed in a box can be loaded up to 5 to 6 tons. Because of this characteristics, live fish requires closer location to consumption area than fresh fish. In the consumption markets, the size of fresh fish is mainly 0.8 to 2kg.Live fish usually goes through auction, and quality is graded. Main purchaser comes from many small-sized restaurants, so a relatively small farmer and distributer can sell it. Aquacultured sea bream has been transacted as a fresh fish in GMS ,since 1993 when the price plummeted. Economies of scale works in case of fresh fish. The characteristics of fresh fish is as follows : As a large scale demander, General Merchandise Stores are the main purchasers of sea bream and the size of the fish is around 1.3kg. It mainly goes through negotiation. Aquacultured sea bream has been established as a representative food in General Merchandise Stores. GMS require stable and mass supply, consistent size, and low price. And Distribution of fresh fish is undertook by the large scale distributers, which can satisfy requirements of GMS. The market share in Tokyo Central Wholesale Market shows Mie Pref. is dominating in live fish. And Ehime Pref. is dominating in fresh fish. Ehime Pref. showed remarkable growth in 1990s. At present, the dealings of live fish is decreasing. However, the dealings of fresh fish is increasing in Tokyo Central Wholesale Market. The price of live fish is decreasing more than one of fresh fish. Even though Ehime Pref. has an ideal natural environment for sea bream aquaculture, its entry into sea bream aquaculture was late, because it was located at a further distance to consumers than the competing producing areas. However, Ehime Pref. became the number one producing areas through the sales of fresh fish in the 1990s. The production volume is almost 3 times the production volume of Mie Pref. which is the number two production area. More conversion from yellow tail aquaculture to sea bream aquaculture is taking place in Ehime Pref., because Kagosima Pref. has a better natural environment for yellow tail aquaculture. Transportation is worse than Mie Pref., but this region as a far-flung producing area makes up by increasing the business scale. Ehime Pref. increases the market share for fresh fish by creating demand from GMS. Ehime Pref. has developed market strategies such as a quick return at a small profit, a stable and mass supply and standardization in size. Ehime Pref. increases the market power by the capital of a large scale commission agent. Secondly Mie Pref. is close to markets and composed of small scale farmers. Mie Pref. switched to sea bream aquaculture early, because of the price decrease in aquacultured yellou tail and natural environmental problems. Mie Pref. had not changed until 1993 when the price of the sea bream plummeted. Because it had better natural environment and transportation. Mie Pref. has a suitable water temperature range required for sea bream aquaculture. However, the price of live sea bream continued to decline due to excessive production and economic recession. As a consequence, small scale farmers are faced with a market price below the average production cost in 1993. In such kind of situation, the small-sized and inefficient manager in Mie Pref. was obliged to withdraw from sea bream aquaculture. Kumamoto Pref. is located further from market sites and has an unsuitable nature environmental condition required for sea bream aquaculture. Although Kumamoto Pref. is trying to convert to the puffer fish aquaculture which requires different rearing techniques, aquaculture technique for puffer fish is not established yet.

  • PDF