• Title/Summary/Keyword: real-time task scheduling

Search Result 206, Processing Time 0.025 seconds

Dynamic Quantum-Size Pfair Scheduling Considering Task Set Characteristics (태스크 집합의 특성을 고려한 동적 퀀텀 크기 Pfair 스케줄링)

  • Cha, Seong-Duk;Kim, In-Guk
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.7
    • /
    • pp.39-49
    • /
    • 2007
  • Since the PF scheduling algorithm[13], which is optimal in the hard real-time multiprocessor environments, several scheduling algorithms have been proposed. All these algorithms assume the fixed unit quantum size, and this assumption has problems in the mode change environments. To settle the problem, we already proposed a method for deciding the optimal quantum size[2]. In this paper, we propose improved methods considering the task set whose utilization e is less than or equal to p/3+1. As far as the numbers of computations used to determine the optimal quantum size are concerned, newly proposed methods are proved to be more efficient than our previous ones.

A Prioritized Task Scheduling Method in Multimedia Systems for MPEG-2 Decoding (MPEG-2 디코딩을 위한 멀티미디어 시스템에서 우선순위에 의한 태스크 스케쥴링 기법)

  • Kim Jinhwan
    • The KIPS Transactions:PartB
    • /
    • v.12B no.2 s.98
    • /
    • pp.173-180
    • /
    • 2005
  • In this paper, we propose an efficient real-time scheduling method of multimedia tasks for decoding frames of MPEG-2 video streams. In our task model, each frame is decoded by a separate multimedia task. The decoding task for each frame is assigned to the priority according to the precedence and importance of frames in a video stream. We use a priority-based scheduling policy in order to effectively allocate the CPU bandwidth to multimedia tasks for MPEG-2 decoding. We show how to dynamically control the fraction of the CPU bandwidth allocated to each multimedia task according to the priority. The primary purpose of our scheduling method is to enhance the real-time performance of the multimedia system by minimizing the number of decoding tasks that have missed their deadlines while reducing the decoding times of these multimedia tasks. The performance of this scheduling method is compared with that of similar mechanisms through simulation experiments.

Optimal RM Scheduling for Simply Periodic Tasks on Uniform Multiprocessors (유니폼 멀티프로세서 환경에서 단순 주기성 태스크를 위한 최적 RM 스케줄링)

  • Jung, Myoung-Jo;Cho, Moon-Haeng;Kim, Joo-Man;Lee, Cheol-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.52-63
    • /
    • 2009
  • The problem of scheduling simply periodic task systems upon a uniform multiprocessor is considered. Partitioning of periodic task systems requires solving the bin-packing problem, which is known to be intractable (NP-hard in the strong sense). This paper presents a global scheduling algorithm which transforms a given simply periodic task system into another using a "task-splitting" technique. Each transformed simply periodic task system is guaranteed to be successfully scheduled upon any uniform multiprocessor using a partitioned scheduling algorithm. It is proven that the proposed algorithm achieves the theoretical maximum utilization bound upon any uniform multiprocessor platform.

A Study on the Expanded R/R Scheduling in Priority-based $\mu{C/OS-II}$ Kernel (우선순위 기반의 $\mu{C/OS-II}$ 커널에서 확장된 R/R 스케줄링 연구)

  • 김태호;김창수
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.3
    • /
    • pp.323-330
    • /
    • 2002
  • Recently, the existing embedded real-time operating systems(RTOSs) are being developed in terms of various modified versions in every application fields. Major characteristics and difference of these OSs lie in their distinct development of mechanisms which can be used in various environment and task-scheduling function which can control time-limited contingencies. In this paper, we design and implement round/robin scheduling algorithm based on time-sharing with equal-priority for multiple tasks which are provided preemptive and priority task allocation function in $\mu{C/OS-II}$ version 2.03. We propose the most important event-ready list structure in $\mu{C/OS-II}$; kernel, and provide the running result for multiple tasks with equal priority for the proposed structure.

  • PDF

Power-aware Real-time Task Scheduling in Dependable Embedded Systems (신뢰도를 요구하는 임베디드 시스템에서의 저전력 태스크 스케쥴링)

  • Kim, Kyong Hoon;Kim, Yuna;Kim, Jong
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.1
    • /
    • pp.25-29
    • /
    • 2008
  • In this paper, we provide an adaptive power-aware checkpointing scheme for fixed priority-based DVS scheduling in dependable real-time systems. In the provided scheme, we analyze the minimum number of tolerable faults of a task and the optimal checkpointing interval in order to meet the deadline and guarantee its specified reliability. The energy-efficient voltage level at a fault arrival is also analyzed and used in the recovery of the faulty task.

  • PDF

Priority-based Group Task Scheduling Policy for a Multiplayer Real-time Game Server (다중사용자용 실시간 게임 서버를 위한 우선순위 기반 그룹 태스크 스케쥴링 정책)

  • Kim, Jin-Hwan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.57-64
    • /
    • 2012
  • Multiplayer, real-time games are a kind of soft real-time systems because a game server has to respond to requests from many clients within specified time constraints. Client events have different timeliness and consistency requirements according to their nature in the game world. These requirements lead to different priorities on CPU processing. Events can be divided into different groups, depending on their consistency degree and priority. To handle these events with different priority and meet their timing constraints, we propose a priority-based group task scheduling policy in this paper. The number of clients or events requested by each client may be increased temporarily. In the presence of transient overloading, the game server needs to allocate more CPU bandwidth to serve an event with the higher priority level preferentially. The proposed scheduling policy is capable of enhancing real-time performance of the entire system by maximizing the number of events with higher priority completed successfully within their deadlines. The performance of this policy is evaluated through extensive simulation experiments.

Real-Time Task Scheduling Algorithm using a Multi-Dimensional Methodology for Embedded Real-Time Operating Systems (내장형 실시간 운영체제에서 다차원 기법을 이용한 실시간 태스크 스케줄링 알고리즘)

  • Cho, Moon-Haeng;Lim, Jae-Seok;Lee, Jin-Wook;Kim, Joo-Man;Lee, Cheol-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.1
    • /
    • pp.94-102
    • /
    • 2010
  • In recent years, embedded systems such as cellular phones, Portable Multimedia Player, intelligent appliance, automobile engine control are reshaping the way people live, work, and play. Thereby, services application to guarantee various requirements of users become increasingly sophisticated and complicated, such embedded computing platforms use real-time operating systems (RTOSs) with time determinism. These RTOSs must not only provide predictable services but must also be efficient and small in size. Kernel services should also be deterministic by specifying how long each service call will take to execute. Having this information allows the application designers to better plan their real-time application software so as not to miss the deadline of each task. In this paper, we present the complete generalized real-time scheduling algorithm using multi-dimensional methodology to determine the highest priority in the ready list with 2r levels of priorities in a constant time without additional memory overhead.

Time-Efficient Voltage Scheduling Algorithms for Embedded Real-Time Systems with Task Synchronization (태스크 동기화가 필요한 임베디드 실기간 시스템에서 시간-효율적인 전압 스케쥴링 알고리즘)

  • Lee, Jae-Dong;Kim, Jung-Jong
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.1
    • /
    • pp.30-37
    • /
    • 2010
  • Many embedded real - lime systems have adopted processors supported with dynamic voltage scal-ing(DVS) recently. Power is one of the important metrics for Optimization in the design and operation of embedded real-time systems. We can save considerable energy by using slowdown of processor sup-ported with DVS. In this paper, we improved the previous algorithm at a point of view of time complexity to calculate task slowdown factors for an efficient energy consumption in embedded real-time systems with task synchronization. We grasped the properties of the previous algorithm having $O(n^{2})$ time complexity through mathematical analysis and s simulation. Using its properties we proposed the improved algorithms with O(nlogn) and O(n) time complexity which have the same performance as the previous algorithm has.

A Soft Aperiodic Real-Time Task Scheduling Algorithm Supporting Maximum Slack Time (최대여유시간 제공 연성 비주기 실시간 태스크 스케줄링 알고리즘)

  • Im, Deok-Ju;Park, Seong-Han
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.37 no.4
    • /
    • pp.9-15
    • /
    • 2000
  • The purpose of this paper is to minimize the a slack computation time of the scheduling of a soft aperiodic real-time tasks in a fixed priority real-time system. The proposed algorithm reduces the computation overhead at on-line time and supports the maximum slack time assigned for aperiodic real-time tasks. The proposed algorithm has 10~20% more response time for aperiodic real-time tasks than that of Slack Stealing Algorithm that offers optimal response time in fixed priority real-time system. However, the performance of the proposed algorithm is seven times better in a scheduling overhead.

  • PDF

Comparative Study on Jitter Control Methods for Improving Real-Time Control Performance (실시간 제어 성능 향상을 위한 지터 제어 기법의 비교 연구)

  • Park, Moon-Ju;Lim, Yang-Mi
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.1
    • /
    • pp.11-16
    • /
    • 2010
  • This paper compares and studies scheduling methods to reduce jitter in real-time control systems. While previous research has focused on dynamic-priority scheduling schemes, this paper focuses on fixed-priority scheduling which is more widely used. It is pointed out that previously defined jitter measures might not be useful in enhancing the control performance of a real-time task because the measures are relative values. We present a new jitter measure and a new scheduling scheme for fixed-priority tasks. The experimental results through simulation show that the new scheduling scheme reduces jitter and enhances control performance.