• 제목/요약/키워드: real-time surveillance

검색결과 411건 처리시간 0.021초

YOLO를 이용한 SAR 영상의 선박 객체 탐지: 편파별 모델 구성과 정확도 특성 분석 (Ship Detection from SAR Images Using YOLO: Model Constructions and Accuracy Characteristics According to Polarization)

  • 임윤교;윤유정;강종구;김서연;정예민;최소연;서영민;이양원
    • 대한원격탐사학회지
    • /
    • 제39권5_3호
    • /
    • pp.997-1008
    • /
    • 2023
  • 해상의 선박탐지는 다양한 방법으로 수행될 수 있는데, 위성은 광역적인 감시가 가능하고, 특히 합성개구레이더(Synthetic Aperture Radar, SAR) 영상은 주야간 및 전천후로 활용될 수 있다. 본 연구에서는 SAR 영상으로부터 효율적인 선박 탐지 방법을 제시하기 위하여, Sentinel-1 영상에 You Only Look Once Version 5 (YOLOv5) 모델을 적용하여 선박 탐지를 수행하고, 편파별 개별 모델과 통합 모델의 차이 및 편파별 정확도 특성을 분석하였다. 파라미터가 작고 가벼운 YOLOv5s와 파라미터가 많지만 정확도가 높은 YOLOv5x 두가지 모델에 대하여 각각 (1) HH, HV, VH, VV 각 편파별로 나누어 학습/검증 및 평가 그리고 (2) 모든 편파의 영상을 사용하여 학습/검증 및 평가를 실시한 결과, 네 가지 실험에서 모두 0.977 ≤ AP@0.5 ≤ 0.998의 비슷하면서 매우 높은 정확도를 나타냈다. 이러한 결과를 현업시스템의 관점에서 보면, 가벼운 YOLO 모델(YOLOv5s, YOLOv8s 등)로 4개 편파 통합 모델을 구축하는 것이 실시간 선박탐지에 효과적임을 시사하는 것이다. 이 실험에서 사용한 영상은 19,582장이었지만, Sentinel-1 이외에도 Capella, ICEYE 등 다른 SAR 영상을 추가적으로 활용한다면, 보다 더 유연하고 정확한 선박 탐지 모델이 구축될 수 있을 것이다.