• Title/Summary/Keyword: real-time safe evacuation route

Search Result 6, Processing Time 0.019 seconds

Development of a Real-time Safest Evacuation Route using Internet of Things and Reinforcement Learning in Case of Fire in a Building (건물 내 화재 발생 시 사물 인터넷과 강화 학습을 활용한 실시간 안전 대피 경로 방안 개발)

  • Ahn, Yusun;Choi, Haneul
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.2
    • /
    • pp.97-105
    • /
    • 2022
  • Human casualties from fires are increasing worldwide. The majority of human deaths occur during the evacuation process, as occupants panic and are unaware of the location of the fire and evacuation routes. Using an Internet of Things (IoT) sensor and reinforcement learning, we propose a method to find the safest evacuation route by considering the fire location, flame speed, occupant position, and walking conditions. The first step is detecting the fire with IoT-based devices. The second step is identifying the occupant's position via a beacon connected to the occupant's mobile phone. In the third step, the collected information, flame speed, and walking conditions are input into the reinforcement learning model to derive the optimal evacuation route. This study makes it possible to provide the safest evacuation route for individual occupants in real time. This study is expected to reduce human casualties caused by fires.

Safety Assessment of the Evacuation at School Building by Escape Training and Simulation (학교건물에서 피난훈련과 시뮬레이션을 통한 피난안전성 평가)

  • Jeong, Mu-Heon;Lee, Beong-Gon
    • Fire Science and Engineering
    • /
    • v.22 no.3
    • /
    • pp.287-292
    • /
    • 2008
  • In this study, the evacuation training were performed in a high school building in Cheong-Ju and compared with the simulation program (Simulex). Also numerical analysis of room fire in school building was conducted by fire model (FDS, CFAST) and evaluated the available safe egress time for the safety assessment. As a result, the 8% of total egress persons were failed to escape at evacuation training and 40% of total egress persons were failed to escape at Simutex simulation. Simutex program was not reflected the real escape conditions, such as evacuation route, refuge place, etc.

Real-time Intelligent Exit Path Indicator Using BLE Beacon Enabled Emergency Exit Sign Controller

  • Jung, Joonseok;Kwon, Jongman;Jung, Soonho;Lee, Minwoo;Mariappan, Vinayagam;Cha, Jaesang
    • International journal of advanced smart convergence
    • /
    • v.6 no.1
    • /
    • pp.82-88
    • /
    • 2017
  • Emergency lights and exit signs are an indispensable part of safety precautions for effective evacuation in case of emergency in public buildings. These emergency sign indicates safe escape routes and emergency doors, using an internationally recognizable sign. However visibility of those signs drops drastically in case of emergency situations like fire smoke, etc. and loss of visibility causes serious problems for safety evacuation. This paper propose a novel emergency light and exit sign built-in with Bluetooth Low Energy (BLE) Beacon to assist the emergency self-guiding evacuation using devices for crisis and emergency management to avoid panic condition inside the buildings. In this approach, the emergency light and exit sign with the BLE beacons deployed in the indoor environments and the smart devices detect their indoor positions, direction to move, and next exit sign position from beacon messages and interact with map server in the Internet / Intranet over the available LTE and/or Wi-Fi network connectivity. The map server generate an optimal emergency exit path according to the nearest emergency exit based on a novel graph generation method for less route computation for each smart device. All emergency exit path data interfaces among three system components, the emergency exit signs, map server, and smart devices, have been defined for modular implementation of our emergency evacuation system. The proposed exit sign experimental system has been deployed and evaluated in real-time building environment thoroughly and gives a good evidence that the modular design of the proposed exit sign system and a novel approach to compute emergency exit path route based on the BLE beacon message, map server, and smart devices is competitive and viable.

Design of Fire Evacuation Guidance System using USN Mesh Routing in High-Rise Buildings (초고층 건물 화재에서 USN 메쉬 라우팅을 이용한 피난유도 시스템 설계)

  • Choi, Yeon-Yi;Joe, In-Whee
    • Fire Science and Engineering
    • /
    • v.22 no.3
    • /
    • pp.278-286
    • /
    • 2008
  • When big fire in high rise building and multiplex happens, the needs for high prevention system of disaster are being increased for getting the real-time scene state, quick lifesaver, and safe life security. In this paper the proposed evacuation guidance algorithm which analyzed the feature and danger of fire in high rise buildings, gave simplicity and scalability. Our research shows as fire and disaster occur in high rise buildings we construct sensor networks and sense realtime location information on fire alive people, and the situation information for fire instructed quick and safe escaping route by using mesh routing algorithm scheme relative to exit sign.

Proposal of safe fire escape system for the day-care center and the kindergarten (어린이집 및 유치원의 화재 대피용 안전 경로 시스템 제안)

  • Choi, Jun-Ho;Kwon, Mee-Rhan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.6
    • /
    • pp.297-301
    • /
    • 2015
  • Day-care centers and kindergartens are increasing along with the damage caused by fire year after year. Infants and toddlers have a low response capability than adults to fire situations such as heavy smoke which causes less or zero visibility thus it is difficult in evacuation route during dangerous fire situations. Because of these circumstances, teachers need to build a safe pathway signage system along with the usual fire safety training needs of infants and children. In this paper, we propose a system for fire escape which marks the escape routes and are automatically implemented through the push function that smartphone recognizes during the real-time fire situation, and establish a system that verifies its authenticity.

A Study of Evacuation Route Guidance System using Location-based Information (위치기반 정보를 활용한 비상대피경로 안내 지원시스템 개발)

  • Kim, Ho-Kyeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.18-23
    • /
    • 2017
  • The shipyard quay process struggles to control workers and maintain a secure working environment because of the presence of at least 1,000 people. Therefore, safety accidents such as an explosion or a fire are likely to occur. With the recent increase in safety accidents at shipyards, the requirements for safety and process monitoring have been strengthened. Major shipyards are conducting researchto monitor the process in real time and to detect the work environment for safety. In this paper, we propose a safe and accurate evacuation route based on the information of the dangerous area and the user's location based on a mobile application to reduce the casualty accidents in the presence of many personnel in a concentrated area. To do this, we analyze the trend of the fire escape system on the ground building, compare various algorithms for escape route calculation, select appropriate algorithms for this study, and perform programming. A basic experiment was conducted to confirm the results. The proposed method is expected to be used in large ship construction sites, passenger ships and large public facilities to reduce accidents in the case of a safety accident.