• Title/Summary/Keyword: real-time position

Search Result 1,512, Processing Time 0.028 seconds

Real time Background Estimation and Object Tracking (실시간 배경갱신 및 이를 이용한 객체추적)

  • Lee, Wan-Joo
    • The Journal of Information Technology
    • /
    • v.10 no.4
    • /
    • pp.27-39
    • /
    • 2007
  • Object tracking in a real time environment is one of challenging subjects in computer vision area during past couple of years. This paper proposes a method of object detection and tracking using adaptive background estimation in real time environment. To obtain a stable and adaptive background, we combine 3-frame differential method and running average single gaussian background model. Using this background model, we can successfully detect moving objects while minimizing false moving objects caused by noise. In the tracking phase, we propose a matching criteria where the weight of position and inner brightness distribution can be controlled by the size of objects. Also, we adopt a Kalman Filter to overcome the occlusion of tracked objects. By experiments, we can successfully detect and track objects in real time environment.

  • PDF

An Approach for GPS Clock Jump Detection Using Carrier Phase Measurements in Real-Time

  • Heo, Youn-Jeong;Cho, Jeong-Ho;Heo, Moon-Beom
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.429-435
    • /
    • 2012
  • In this study, a real-time architecture for the detection of clock jumps in the GPS clock behavior is proposed. GPS satellite atomic clocks have characteristics of a second order polynomial in the long term showing sudden jumps occasionally. As satellite clock anomalies influence on GPS measurements which could deliver wrong position information to users as a result, it is required to develop a real time technique for the detection of the clock anomalies especially on the real-time GPS applications such as aviation. The proposed strategy is based on Teager Energy operator, which can be immediately detect any changes in the satellite clock bias estimated from GPS carrier phase measurements. The verification results under numerous cases in the presence of clock jumps are demonstrated.

Real-Time Simulation of Large Rotational Deformation and Manipulation (큰회전 변형 및 조작의 실시간 시뮬레이션)

  • Choi, Min-Gyu;Ko, Hyeong-Seok
    • Journal of the Korea Computer Graphics Society
    • /
    • v.10 no.1
    • /
    • pp.15-21
    • /
    • 2004
  • This paper proposes a real-time technique for simulating large rotational deformations. Modal analysis based on a linear strain tensor has been shown to be suitable for real-time simulation, but is accurate only for moderately small deformations. In the present work, we identify the rotational component of an infinitesimal deformation, and extend linear modal analysis to track that component. We then develop a procedure to integrate the small rotations occurring al the nodal points. An interesting feature of our formulation is that it can implement both position and orientation constraints in a straightforward manner. These constraints can be used to interactively manipulate the shape of a deformable solid by dragging/twisting a set of nodes, Experiments show that the proposed technique runs in real-time even for a complex model, and that it can simulate large bending and/or twisting deformations with acceptable realism.

  • PDF

Real-time Visual Tracking System and Control Method for Laparoscope Manipulator (복강경 수술용 도구의 실시간 영상 추적 및 복강경 조종기의 지능형 제어 방법)

  • 김민석;허진석;이정주
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.83-90
    • /
    • 2004
  • In this paper we present a new real-time visual servoing unit for laparoscopic surgery This unit can automatically control laparoscope manipulator through visual tracking of laparoscopic surgical tool. For the tracking, we present two-stage adaptive CONDENSATION(conditional density propagation) algorithm to extract the accurate position of the surgical tool tip from a surgical image sequence in real-time. This algorithm can be adaptable to abrupt change of laparoscope illumination. For the control, we present virtual damper system to control a laparoscope manipulator safely and stably. This system causes the laparoscope to move under constraint of the virtual dampers which are linked to the four sides of image. The visual servoing unit operates the manipulator in real-time with locating the surgical tool in the center of image. The experimental results show that the proposed visual tracking algorithm is highly robust and the controlled manipulator can present stable view with safe.

Real-Time Haptic Rendering for Tele-operation with Varying Communication Time Delay (가변적인 통신지연시간을 갖는 원격 작업 환경을 위한 실시간 햅틱 렌더링)

  • Lee, K.;Chung, S.Y.
    • Journal of Power System Engineering
    • /
    • v.13 no.2
    • /
    • pp.71-82
    • /
    • 2009
  • This paper presents a real-time haptic rendering method for a realistic force feedback in a remote environment with varying communication time-delay. The remote environment is assumed as a virtual environment based on a computer graphics, for example, on-line shopping mall, internet game and cyber-education. The properties of a virtual object such as stiffness and viscosity are assumed to be unknown because they are changed according to the contact position and/or a penetrated depth into the object. The DARMAX model based output estimator is proposed to trace the correct impedance of the virtual object in real-time. The output estimator is developed on the input-output relationship. It can trace the varying impedance in real-time by virtue of P-matrix resetting algorithm. And the estimator can trace the correct impedance by using a white noise that prevents the biased input-output information. Realistic output forces are generated in real-time, by using the inputs and the estimated impedance, even though the communication time delay and the impedance of the virtual object are unknown and changed. The generated forces trace the analytical forces computed from the virtual model of the remote environment. Performance is demonstrated by experiments with a 1-dof haptic device and a spring-damper-based virtual model.

  • PDF

Position and Orientation Recognition for Adjusting Electronic Tuners (전자 튜너 조정을 위한 위치와 방향 인식)

  • Yang, Jae-Ho;Kong, Young-June;Lee, Moon-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.39-49
    • /
    • 1999
  • This paper describes the development of a vision-aided position and orientation recognition system for automatically adjusting electronic tuners which control the waveform by rotating variable resisters. The position and orientation recognition system estimates the center and the angle of the tuner grooves so that the main controller may correct the difference from the ideal position and thereby manipulate the variable resisters automatically. In this paper a robust algorithm is suggested which estimates the center and the angle of the tuner grooves fast and precisly from the source image with lighting variance and video noise. In the algorithm morphological filtering, 8-chain coding, and invariant moments are sequentially used to figure out image segments concerned. The performance of the proposed system was evaluated using a set of real specimens. The results indicate the system works well enough to be used practically in real manufacturing lines. If the system adopts a high speed frame grabber which enables real time image processing, it can also be applied to positioning of robot manipulators as well as automated PCB adjusters.

  • PDF

Development of a Real-Time Position Tracking System for a Manufacturing Process Based on a UWB Sensor Using a Kalman Filter (칼만필터를 적용한 UWB 센서기반 제조업 조립공정작업의 실시간 위치추적 시스템 개발)

  • Jeong, Seung-Hyun;Choi, Deuk-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.627-633
    • /
    • 2020
  • Assembly process data can be gathered in real time in a manufacturing execution system (MES) server using proximity sensors, barcodes, RFID, ZigBee, Bluetooth, wireless sensor networks, etc. Although this is suitable for identifying process flow and checking production progress, it is difficult to trace the location of individual workers in real time for missing work or trajectories within the work area. To overcome this, the location and trajectory of the working tool can be analyzed in real time through a position tracking system of an operator's working tool. It can instruct the operator to perform a consistent working process. Productivity and quality improvement can be achieved by an alarming or blocking operator with possible assembly defects during the assembly process in real time. To this end, we developed a real-time tool position-tracking sensor system based on Ultra Wide Band (UWB) trilateration using a Kalman filter to eliminate mechanical vibration and radio communication noise.

AoA-Based Local Positioning System Using a Time-Modulated Array

  • Baik, Kyung-Jin;Lee, Sangjoon;Jang, Byung-Jun
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.4
    • /
    • pp.181-185
    • /
    • 2017
  • In this paper, we propose an angle-of-arrival (AoA)-based local positioning system using a time-modulated array (TMA). The proposed system can determine a two-dimensional position using only two TMAs without any synchronization between the two receivers. The hardware for the proposed system consists of two commercial monopole antennas, a self-designed switch, and a well-known software-defined radio receiver. Furthermore, the location can be simply estimated in real time without the need for complicated positioning algorithms such as the MUSIC and ESPRIT algorithms. In order to evaluate the performance of our system, we estimated the position of the wireless node in an office environment. The position was estimated with a mean error of less than 0.1 m. We therefore believe that our system is appropriate for various wireless local positioning applications.

Device Driver Development of LSM Using General Purpose PCI I/O Board

  • Kim, Hyun-Joong;Lee, Sang-Min;Ham, Woon-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1684-1688
    • /
    • 2003
  • In this paper, position and speed control algorithm of LSM (Linear Stepping Motor) using general-purpose PCI I/O board is discussed. The main purpose of this paper is to show that LSM controller can be established on the non real time operating system such as Microsoft Win2000 under the assumption that thread priority strategy is well designed. We can guarantee sampling interval less than 5msec based on the Pentium III microprocessor. Therefore this kind of LSM controller development environment makes shorten the prior research period needed to verify the validness of the proposed control strategy. We also introduce the tool of the real-time windows target system of matlab, which also makes shorten the prior research period. The main focus of this paper is on developing general purpose NT device driver which can drive the general purpose PCI board and applying it for implementing the hardware interface for 2- axis linear stepping motor control. From the experimental results show that the developed LSM controller guarantee 2 micrometer resolution in position control with 10cm/sec moving speed

  • PDF

An Implementation of Real-time Motion Restoration System based on Inverse Kinematics (역운동학을 이용한 실시간 동작 복원 시스템 구현)

  • Lee, R.H.;Lee, C.W.
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.6
    • /
    • pp.741-750
    • /
    • 2014
  • This paper presents a real-time motion restoration system for people who need remedial exercise of musculoskeletal based on Inverse Kinematics. A new approach is suggested to recognize a gesture based on restored human motion which is calculated the 3D positions of intermediate joints using 3D positions of body features estimated from images. For generating the 3D candidate positions of intermediate joints which cannot be extracted from images, we apply an Inverse Kinematics theory to compute the target position of intermediate joints. And we can reduce the number of candidate positions by applying the various physical constraints of body. Finally, we can generate the more accurate final position using the Kalman filter for a motion tracking and the relationship between the previous frame information and the candidate positions. The system provide motion information which are rotation angle and height in real-time, therefore the rehabilitation exercises can be performed based on the information and figured out proper exercise for individual status.