• Title/Summary/Keyword: real-time polymerase reaction (qPCR)

Search Result 156, Processing Time 0.034 seconds

Novel splice isoforms of pig myoneurin and their diverse mRNA expression patterns

  • Guo, Xiaohong;Li, Meng;Gao, Pengfei;Cao, Guoqing;Cheng, Zhimin;Zhang, Wanfeng;Liu, Jianfeng;Liu, Xiaojun;Li, Bugao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.10
    • /
    • pp.1581-1590
    • /
    • 2018
  • Objective: The aim of this study was to clone alternative splicing isoforms of pig myoneurin (MYNN), predict the structure and function of coding protein, and study temporal and spatial expression characteristics of each transcript. Methods: Alternative splice isoforms of MYNN were identified using RNA sequencing (RNA-seq) and cloning techniques. Quantitative real-time polymerase chain reaction (qPCR) was employed to detect expression patterns in 11 tissues of Large White (LW) and Mashen (MS) pigs, and to study developmental expression patterns in cerebellum (CE), stomach (ST), and longissimus dorsi (LD). Results: The results showed that MYNN had two alternatively spliced isoforms, MYNN-1 (GenBank accession number: KY470829) and MYNN-2 (GenBank accession number: KY670835). MYNN-1 coding sequence (CDS) is composed of 1,830 bp encoding 609 AA, whereas MYNN-2 CDS is composed of 1,746 bp encoding 581 AA. MYNN-2 was 84 bp less than MYNN-1 and lacked the sixth exon. MYNN-2 was found to have one $C_2H_2$ type zinc finger protein domain less than MYNN-1. Two variants were ubiquitously expressed in all pig tissues, and there were significant differences in expression of different tissues (p<0.05; p<0.01). The expression of MYNN-1 was significantly higher than that of MYNN-2 in almost tissues (p<0.05; p<0.01), which testified that MYNN-1 is the main variant. The expression of two isoforms decreased gradually with increase of age in ST and CE of MS pig, whereas increased gradually in LW pig. In LD, the expression of two isoforms increased first and then decreased with increase of age in MS pig, and decreased gradually in LW pig. Conclusion: Two transcripts of pig MYNN were successfully cloned and MYNN-1 was main variant. MYNN was highly expressed in ST, CE, and LD, and their expression was regular. We speculated that MYNN plays important roles in digestion/absorption and skeletal muscle growth, whereas the specific mechanisms require further elucidation.

Distribution of HPV Genotypes in Cervical Cancer in Multiethnic Malaysia

  • Raub, Sayyidi Hamzi Abdul;Isa, Nurismah Md.;Zailani, Hatta Ahmad;Omar, Baharudin;Abdullah, Mohamad Farouk;Amin, Wan Anna Mohd;Noor, Rushdan Md.;Ayub, Mukarramah Che;Abidin, Zainal;Kassim, Fauziah;Vicknesh, Visvalingam;Zakaria, Zubaidah;Kamaluddin, Muhammad Amir;Tan, Geok Chin;Syed Husain, Sharifah Noor Akmal
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.651-656
    • /
    • 2014
  • Background: Cervical cancer is the third commonest type of cancer among women in Malaysia. Our aim was to determine the distribution of human papilloma virus (HPV) genotypes in cervical cancer in our multi-ethnic population. Materials and Methods: This was a multicentre study with a total of 280 cases of cervical cancer from 4 referral centres in Malaysia, studied using real-time polymerase chain reaction (qPCR) detection of 12 high risk-HPV genotypes. Results: Overall HPV was detected in 92.5% of cases, in 95.9% of squamous cell carcinomas and 84.3%of adenocarcinomas. The five most prevalent high-risk HPV genotypes were HPV 16 (68.2%), 18 (40%), 58 (10.7%), 33 (10.4%) and 52 (10.4%). Multiple HPV infections were more prevalent (55.7%) than single HPV infections (36.8%). The percentage of HPV positive cases in Chinese, Malays and Indians were 95.5%, 91.9% and 80.0%, respectively. HPV 16 and 18 genotypes were the commonest in all ethnic groups. We found that the percentage of HPV 16 infection was significantly higher in Chinese (75.9%) compared to Malays (63.7%) and Indians (52.0%) (p<0.05), while HPV 18 was significantly higher in Malays (52.6%) compared to Chinese (25.0%) and Indians (28%) (p<0.05). Meanwhile, HPV 33 (17.9%) and 52 (15.2%) were also more commonly detected in the Chinese (p<0.05). Conclusions: This study showed that the distribution of HPV genotype in Malaysia is similar to other Asian countries. Importantly, we found that different ethnic groups in Malaysia have different HPV genotype infection rates, which is a point to consider during the implementation of HPV vaccination.

Expression Levels of Tetraspanin KAI1/CD82 in Breast Cancers in North Indian Females

  • Singh, Richa;Bhatt, Madan Lal Brahma;Singh, Saurabh Pratap;Kumar, Vijay;Goel, Madhu Mati;Mishra, Durga Prasad;Srivastava, Kirti;Kumar, Rajendra
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3431-3436
    • /
    • 2016
  • Background: Carcinogenesis is a multifaceted intricate cellular mechanism of transformation of the normal functions of a cell into neoplastic alterations. Metastasis may result in failure of conventional treatment and death Hence, research on metastatic suppressors in cancer is a high priority. The metastatic suppressor gene CD82, also known as KAI1, is a member of the transmembrane 4 superfamily which was first identified in carcinoma of prostate. Little work has been done on this gene in breast cancer. Herein, we aimed to determine the gene and protein level expression of CD82/KAI1 in breast cancer and its role as a prognosticator. Materials and Methods: In this study, 83 histologically proven cases of breast cancer and a similar number of controls were included. Patient age ranged from 18-70 years. Quantitative Real Time Polymerase Chain Reaction (q-RT PCR) and immunohistochemistry (IHC) were used to investigate KAI1 expression at gene and protein levels, respectively. Statistical analysis was done to correlate expression of KAI1 and clinicopathological parameters. Results: It was revealed that: (i) KAI1 was remarkably diminished in metastatic vs non metastatic breast cancer both at the gene and the protein levels (P < .05); (ii) KAI1 expression levels were strongly correlated with TNM staging, histological grade and advanced stage (p<0.001) and no association was found with any other studied parameter; (iii) Lastly, a significant correlation was observed between expression of KAI1 and overall median survival of BC patients (P = 0.04). Conclusions: Our results suggest that lack of expression of the KAI1 might indicate a more aggressive form of breast cancer. Loss of KAI1 may be considered a significant prognostic marker in predicting metastatic manifestation. When evaluated along with the clinical and pathological factors, KAI1 expression may be beneficial to tailor aggressive therapeutic strategies for such patients.

Four Novel Synthetic Tryptamine Analogs Induce Head-Twitch Responses and Increase 5-HTR2a in the Prefrontal Cortex in Mice

  • Abiero, Arvie;Ryu, In Soo;Botanas, Chrislean Jun;Custodio, Raly James Perez;Sayson, Leandro Val;Kim, Mikyung;Lee, Hyun Jun;Kim, Hee Jin;Seo, Joung-Wook;Cho, Min Chang;Lee, Kun Won;Yoo, Sung Yeun;Jang, Choon-Gon;Lee, Yong Sup;Cheong, Jae Hoon
    • Biomolecules & Therapeutics
    • /
    • v.28 no.1
    • /
    • pp.83-91
    • /
    • 2020
  • Tryptamines are monoamine alkaloids with hallucinogenic properties and are widely abused worldwide. To hasten the regulations of novel substances and predict their abuse potential, we designed and synthesized four novel synthetic tryptamine analogs: Pyrrolidino tryptamine hydrochloride (PYT HCl), Piperidino tryptamine hydrochloride (PIT HCl), N,N-dibutyl tryptamine hydrochloride (DBT HCl), and 2-Methyl tryptamine hydrochloride (2-MT HCl). Then, we evaluated their rewarding and reinforcing effects using the conditioned place preference (CPP) and self-administration (SA) paradigms. We conducted an open field test (OFT) to determine the effects of the novel compounds on locomotor activity. A head-twitch response (HTR) was also performed to characterize their hallucinogenic properties. Lastly, we examined the effects of the compounds on 5-HTR1a and 5-HTR2a in the prefrontal cortex using a quantitative real-time polymerase chain reaction (qRT-PCR) assay. None of the compounds induced CPP in mice or initiated SA in rats. PYT HCl and PIT HCl reduced the locomotor activity and elevated the 5-HTR1a mRNA levels in mice. Acute and repeated treatment with the novel tryptamines elicited HTR in mice. Furthermore, a drug challenge involving a 7-day abstinence from drug use produced higher HTR than acute and repeated treatments. Both the acute treatment and drug challenge increased the 5-HTR2a mRNA levels. Ketanserin blocked the induced HTR. Taken together, the findings suggest that PYT HCl, PIT HCl, DBT HCl, and 2-MT HCl produce hallucinogenic effects via 5-HTR2a stimulation, but may have low abuse potential.

Ginsenoside Rg1 alleviates Aβ deposition by inhibiting NADPH oxidase 2 activation in APP/PS1 mice

  • Zhang, Han;Su, Yong;Sun, Zhenghao;Chen, Ming;Han, Yuli;Li, Yan;Dong, Xianan;Ding, Shixin;Fang, Zhirui;Li, Weiping;Li, Weizu
    • Journal of Ginseng Research
    • /
    • v.45 no.6
    • /
    • pp.665-675
    • /
    • 2021
  • Background: Ginsenoside Rg1 (Rg1), an active ingredient in ginseng, may be a potential agent for the treatment of Alzheimer's disease (AD). However, the protective effect of Rg1 on neurodegeneration in AD and its mechanism of action are still incompletely understood. Methods: Wild type (WT) and APP/PS1 AD mice, from 6 to 9 months old, were used in the experiment. The open field test (OFT) and Morris water maze (MWM) were used to detect behavioral changes. Neuronal damage was assessed by hematoxylin and eosin (H&E) and Nissl staining. Immunofluorescence, western blotting, and quantitative real-time polymerase chain reaction (q-PCR) were used to examine postsynaptic density 95 (PSD95) expression, amyloid beta (Aβ) deposition, Tau and phosphorylated Tau (p-Tau) expression, reactive oxygen species (ROS) production, and NAPDH oxidase 2 (NOX2) expression. Results: Rg1 treatment for 12 weeks significantly ameliorated cognitive impairments and neuronal damage and decreased the p-Tau level, amyloid precursor protein (APP) expression, and Aβ generation in APP/PS1 mice. Meanwhile, Rg1 treatment significantly decreased the ROS level and NOX2 expression in the hippocampus and cortex of APP/PS1 mice. Conclusions: Rg1 alleviates cognitive impairments, neuronal damage, and reduce Aβ deposition by inhibiting NOX2 activation in APP/PS1 mice.

Green perilla leaf extract ameliorates long-term oxidative stress induced by a high-fat diet in aging mice

  • Edward, Olivet Chiamaka;Thomas, Shalom Sara;Cha, Kyung-Ok;Jung, Hyun-Ah;Han, Anna;Cha, Youn-Soo
    • Nutrition Research and Practice
    • /
    • v.16 no.5
    • /
    • pp.549-564
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Oxidative stress is caused by an imbalance between harmful free radicals and antioxidants. Long-term oxidative stress can lead to an "exhausted" status of antioxidant defense system triggering development of metabolic syndrome and chronic inflammation. Green perilla (Perilla frutescens) is commonly used in Asian cuisines and traditional medicine in southeast Asia. Green perilla possesses numerous beneficial effects including anti-inflammatory and antioxidant functions. To investigate the potentials of green perilla leaf extract (PE) on oxidative stress, we induced oxidative stress by high-fat diet (HFD) in aging mice. MATERIALS/METHODS: C57BL/6J male mice were fed HFD continuously for 53 weeks. Then, mice were divided into three groups for 12 weeks: a normal diet fed reference group (NDcon), high-fat diet fed group (HDcon), and high-fat diet PE treated group (HDPE, 400 mg/kg of body weight). Biochemical analyses of serum and liver tissues were performed to assess metabolic and inflammatory damage and oxidative status. Hepatic gene expression of oxidative stress and inflammation related enzymes were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: PE improved hepatopathology. PE also improved the lipid profiles and antioxidant enzymes, including hepatic glutathione peroxidase (GPx) and superoxide dismutase (SOD) and catalase (CAT) in serum and liver. Hepatic gene expressions of antioxidant and anti-inflammatory related enzymes, such as SOD-1, CAT, interleukin 4 (IL-4) and nuclear factor erythroid 2-related factor (Nrf2) were significantly enhanced by PE. PE also reduced the levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA) in the serum and liver; moreover, PE suppressed hepatic gene expression involved in pro-inflammatory response; Cyclooxygenase-2 (COX-2), nitric oxide synthase (NOS), interleukin 1 beta (IL-1β), and interleukin 6 (IL-6). CONCLUSIONS: This research opens opportunities for further investigations of PE as a functional food and possible anti-aging agent due to its attenuative effects against oxidative stress, resulting from HFD and aging in the future.

p66Shc in sheep preimplantation embryos: Expression and regulation of oxidative stress through the manganese superoxide dismutase-reactive oxygen species metabolic pathway

  • Tong Zhang;Jiaxin Zhang;Ruilan Li
    • Animal Bioscience
    • /
    • v.36 no.7
    • /
    • pp.1022-1033
    • /
    • 2023
  • Objective: p66Shc, a 66 kDa protein isoform encoded by the proto-oncogene SHC, is an essential intracellular redox homeostasis regulatory enzyme that is involved in the regulation of cellular oxidative stress, apoptosis induction and the occurrence of multiple age-related diseases. This study investigated the expression profile and functional characteristics of p66Shc during preimplantation embryo development in sheep. Methods: The expression pattern of p66Shc during preimplantation embryo development in sheep at the mRNA and protein levels were studied by quantitative real-time polymerase chain reaction (RT-qPCR) and immunofluorescence staining. The effect of p66Shc knockdown on the developmental potential were evaluated by cleavage rate, morula rate and blastocyst rate. The effect of p66Shc deficiency on reactive oxygen species (ROS) production, DNA oxidative damage and the expression of antioxidant enzymes (e.g., catalase and manganese superoxide dismutase [MnSOD]) were also investigated by immunofluorescence staining. Results: Our results showed that p66Shc mRNA and protein were expressed in all stages of sheep early embryos and that p66Shc mRNA was significantly downregulated in the 4-to 8-cell stage (p<0.05) and significantly upregulated in the morula and blastocyst stages after embryonic genome activation (EGA) (p<0.05). Immunofluorescence staining showed that the p66Shc protein was mainly located in the peripheral region of the blastomere cytoplasm at different stages of preimplantation embryonic development. Notably, serine (Ser36)-phosphorylated p66Shc localized only in the cytoplasm during the 2- to 8-cell stage prior to EGA, while phosphorylated (Ser36) p66Shc localized not only in the cytoplasm but also predominantly in the nucleus after EGA. RNAi-mediated silencing of p66Shc via microinjection of p66Shc siRNA into sheep zygotes resulted in significant decreases in p66Shc mRNA and protein levels (p<0.05). Knockdown of p66Shc resulted in significant declines in the levels of intracellular ROS (p<0.05) and the DNA damage marker 8-hydroxy2'-deoxyguanosine (p<0.05), markedly increased MnSOD levels (p<0.05) and resulted in a tendency to develop to the morula stage. Conclusion: These results indicate that p66Shc is involved in the metabolic regulation of ROS production and DNA oxidative damage during sheep early embryonic development.

Alfalfa xenomiR-162 targets G protein subunit gamma 11 to regulate milk protein synthesis in bovine mammary epithelial cells

  • Guizhi Meng;Hongjuan Duan;Jingying Jia;Baobao Liu;Yun Ma;Xiaoyan Cai
    • Animal Bioscience
    • /
    • v.37 no.3
    • /
    • pp.509-521
    • /
    • 2024
  • Objective: It was shown that microRNAs (miRNAs) play an important role in milk protein synthesis. However, the post-transcriptional regulation of casein expression by exogenous miRNA (xeno-miRNAs) in ruminants remains unclear. This study explores the regulatory roles of alfalfa xeno-miR162 on casein synthesis in bovine mammary epithelial cells (bMECs). Methods: The effects of alfalfa xenomiR-162 and G protein subunit gamma 11 (GNG11) on proliferation and milk protein metabolism of bMECs were detected by 5-Ethynyl-2'-Deoxyuridine (EdU) staining, flow cytometry, cell counting kit-8 (CCK-8), enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot. Dual-luciferase reporter assay was used to verify the targeting relationship between GNG11 and xenomiR-162. Results: Results showed that over-expression of xenomiR-162 inhibited cell proliferation but promoted apoptosis, which also up-regulated the expression of several casein coding genes, including CSN1S1, CSN1S2, and CSN3, while decreasing the expression of CSN2. Furthermore, the targeting relationship between GNG11 and xenomiR-162 was determined, and it was confirmed that GNG11 silencing also inhibited cell proliferation but promoted apoptosis and reduced the expression of casein coding genes and genes related to the mammalian target of rapamycin (mTOR) pathway. Conclusion: Alfalfa xenomiR-162 appears to regulate bMECs proliferation and milk protein synthesis via GNG11 in the mTOR pathway, suggesting that this xeno-miRNA could be harnessed to modulate CSN3 expression in dairy cows, and increase κ-casein contents in milk.

Identification and functional prediction of long non-coding RNAs related to oxidative stress in the jejunum of piglets

  • Jinbao Li;Jianmin Zhang;Xinlin Jin;Shiyin Li;Yingbin Du;Yongqing Zeng;Jin Wang;Wei Chen
    • Animal Bioscience
    • /
    • v.37 no.2
    • /
    • pp.193-202
    • /
    • 2024
  • Objective: Oxidative stress (OS) is a pathological process arising from the excessive production of free radicals in the body. It has the potential to alter animal gene expression and cause damage to the jejunum. However, there have been few reports of changes in the expression of long noncoding RNAs (lncRNAs) in the jejunum in piglets under OS. The purpose of this research was to examine how lncRNAs in piglet jejunum change under OS. Methods: The abdominal cavities of piglets were injected with diquat (DQ) to produce OS. Raw reads were downloaded from the SRA database. RNA-seq was utilized to study the expression of lncRNAs in piglets under OS. Additionally, six randomly selected lncRNAs were verified using quantitative real-time polymerase chain reaction (qRT-PCR) to examine the mechanism of oxidative damage. Results: A total of 79 lncRNAs were differentially expressed (DE) in the treatment group compared to the negative control group. The target genes of DE lncRNAs were enriched in gene ontology (GO) terms and Kyoto encyclopedia of genes and genomes (KEGG) signaling pathways. Chemical carcinogenesis-reactive oxygen species, the Foxo signaling pathway, colorectal cancer, and the AMPK signaling pathway were all linked to OS. Conclusion: Our results demonstrated that DQ-induced OS causes differential expression of lncRNAs, laying the groundwork for future research into the processes involved in the jejunum's response to OS.

Effect of Various Pathological Conditions on Nitric Oxide Level and L-Citrulline Uptake in Motor Neuron-Like (NSC-34) Cell Lines

  • Shashi Gautam;Sana Latif;Young-Sook Kang
    • Biomolecules & Therapeutics
    • /
    • v.32 no.1
    • /
    • pp.154-161
    • /
    • 2024
  • Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disorder that causes progressive paralysis. L-Citrulline is a nonessential neutral amino acid produced by L-arginine via nitric oxide synthase (NOS). According to previous studies, the pathogenesis of ALS entails glutamate toxicity, oxidative stress, protein misfolding, and neurofilament disruption. In addition, L-citrulline prevents neuronal cell death in brain ischemia; therefore, we investigated the change in the transport of L-citrulline under various pathological conditions in a cell line model of ALS. We examined the uptake of [14C]L-citrulline in wild-type (hSOD1wt/WT) and mutant NSC-34/ SOD1G93A (MT) cell lines. The cell viability was determined via MTT assay. A transport study was performed to determine the uptake of [14C]L-citrulline. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis was performed to determine the expression levels of rat large neutral amino acid transported 1 (rLAT1) in ALS cell lines. Nitric oxide (NO) assay was performed using Griess reagent. L-Citrulline had a restorative effect on glutamate induced cell death, and increased [14C]L-citrulline uptake and mRNA levels of the large neutral amino acid transporter (LAT1) in the glutamate-treated ALS disease model (MT). NO levels increased significantly when MT cells were pretreated with glutamate for 24 h and restored by co-treatment with L-citrulline. Co-treatment of MT cells with L-arginine, an NO donor, increased NO levels. NSC-34 cells exposed to high glucose conditions showed a significant increase in [14C]L-citrulline uptake and LAT1 mRNA expression levels, which were restored to normal levels upon co-treatment with unlabeled L-citrulline. In contrast, exposure of the MT cell line to tumor necrosis factor alpha, lipopolysaccharides, and hypertonic condition decreased the uptake significantly which was restored to the normal level by co-treating with unlabeled L-citrulline. L-Citrulline can restore NO levels and cellular uptake in ALS-affected cells with glutamate cytotoxicity, pro-inflammatory cytokines, or other pathological states, suggesting that L-citrulline supplementation in ALS may play a key role in providing neuroprotection.