• Title/Summary/Keyword: real-time orbit determination

Search Result 39, Processing Time 0.034 seconds

Performance Analysis of Real-time Orbit Determination and Prediction for Navigation Message of Regional Navigation Satellite System

  • Jaeuk Park;Bu-Gyeom Kim;Changdon Kee;Donguk Kim
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.2
    • /
    • pp.167-176
    • /
    • 2023
  • This study presents the performance analysis of real-time orbit determination and prediction for navigation message generation of Regional Navigation Satellite System (RNSS). Since the accuracy of ephemeris and clock correction in navigation message affects the positioning accuracy of the user, it is essential to construct a ground segment that can generate this information precisely when designing a new navigation satellite system. Based on a real-time architecture by an extended Kalman filter, we simulated orbit determination and prediction of RNSS satellites in order to assess the accuracy of orbit and clock prediction and signal-in-space ranging errors (SISRE). As a result of the simulation, the orbit and clock accuracy was at 0.5 m and 2 m levels for 24 hour determination and six hour prediction after the determination, respectively. From the prediction result, we verified that the SISRE of RNSS for six hour prediction was at a 1 m level.

A Study on Perturbation Effect and Orbit Determination of Communication Satellite (통신위성에 작용하는 섭동력의 영향평가와 궤도결정)

  • Park, Soo-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.3
    • /
    • pp.157-164
    • /
    • 1992
  • This study concerns about the orbit prediction and orbit determination of Korean future communication satellite, called 'Moogunghwa", which will be motioned in the geo-stationary orbit. Perturbation effect on the satellite orbit due to nonspherical gravitation of the earth, gravitation of the sun and moon, radiation of sun, drag of the atmosphere was investigated. Cowell's method is used for orbit prediction. Orbit determination was performed by using Extended Kalman Filter which is suitable for real-time orbit determination. The result shows that the chacteristics of the satellite orbit has east-west and south-north drift. So the periodic control time and control value in the view of the periodic of error can be provided. The orbit determination demonstrated the effectiveness since the convergence performance on the positon and velocity error, and state error standard deviation is reasonable.able.

  • PDF

Orbit determination of moogunghwa satellite (무궁화위성의 궤도결정)

  • 박수홍;조겸래
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.692-697
    • /
    • 1992
  • This study concerns about the orbit prediction and orbit determination of Korean future communication satellite, called "Moogunghwa", which will be motioned in the geo-stationary orbit. Perturbation effect on the satellite orbit due to nonspherical geopotential term, lunar and solar gravity, drag force of the atmosphere and solar radiation pressure was investigated. Cowell's method is used for orbit prediction. Orbit determination was performed by using EKF which is suitable for real-time orbit determination. The result shows that the characteristics of the satellite orbit has drift. So the periodic control time and control value in the view of the periodic of error can be provided. The orbit determination demonstrated the effectiveness since the convergence performance on the position and velocity error , and state error standard deviation is reasonable.easonable.

  • PDF

Estimation technique for artificial satellite orbit determination (인공위성 궤도결정을 위한 추정기법)

  • 박수홍;최철환;조겸래
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.425-430
    • /
    • 1991
  • For satellite orbit determination, a satellite (K-3H) which is affected by the earth's gravitational field and the earth's atmospheric drag, the sun, and the moon is chosen as a dynamic model. The state vector include orbit parameters, uncertain parameters associated with perturbations and tracking stations. These perturbations include gravitational constant, atmospheric drag, and jonal harmonics due to the earth nonsphericity. Early orbit was obtained with given the predicted orbital parameter of the satellite. And orbit determination, which is applied to Extended Kalman Filter(EKF) for real time implementation , use the observation data which is given by satellite tracking radar system and then orbit estimation is accomplished. As a result, extended sequential estimation algorithm has a fast convergence and also indicate effectiveness for real time operation.

  • PDF

통신위성에 작용하는 섭동력의 영향평가와 궤도결정

  • 박수홍;조겸래
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.200-205
    • /
    • 1992
  • This study concerns about the orbit prediction and orbit determination of Korean future connumication satellite, called "Moogunghwa" , which will be motioned in the geo-stationary orbit. Perturbation effect on the satellite orbit due to nonspherical term, lunar and solar gravity, drag force of the atmospher, and solar radiation pressure was investigated. Cowell's method is used for orbit prediction. Orbit determination was performed by using Extended Kalman Filter which is suitable for real-time orbit determination. The result shows that the chacteristics of the satellite orbit has east-west and south-north drift. So the periodic control time and control value in the view of the periodic of error can be provided. The orbit determination demonstrated the effectiveness since the convergence performance on the positon and velocity error, and state error standard deviation is reasonable.

Real-Time Orbit Determination for Future Korean Regional Navigation Satellite System

  • Shin, Kihae;Oh, Hyungjik;Park, Sang-Young;Park, Chandeok
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.37-44
    • /
    • 2016
  • This paper presents an algorithm for Real-Time Orbit Determination (RTOD) of navigation satellites for the Korean Regional Navigation Satellite System (KRNSS), when the navigation satellites generate ephemeris by themselves in abnormal situations. The KRNSS is an independent Regional Navigation Satellite System (RNSS) that is currently within the basic/preliminary research phase, which is intended to provide a satellite navigation service for South Korea and neighboring countries. Its candidate constellation comprises three geostationary and four elliptical inclined geosynchronous orbit satellites. Relative distance ranging between the KRNSS satellites based on Inter-Satellite Ranging (ISR) is adopted as the observation model. The extended Kalman filter is used for real-time estimation, which includes fine-tuning the covariance, measurement noise, and process noise matrices. Simulation results show that ISR precision of 0.3-0.7 m, ranging capability of 65,000 km, and observation intervals of less than 20 min are required to accomplish RTOD accuracy to within 1 m. Furthermore, close correlation is confirmed between the dilution of precision and RTOD accuracy.

Satellite Orbit Determination using the Particle Filter

  • Kim, Young-Rok;Park, Sang-Young
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.25.4-25.4
    • /
    • 2011
  • Various estimation methods based on Kalman filter have been applied to the real-time satellite orbit determination. The most popular method is the Extended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF). The EKF is easy to implement and to use on orbit determination problem. However, the linearization process of the EKF can cause unstable solutions if the problem has the inaccurate reference orbit, sparse or insufficient observations. In this case, the UKF can be a good alternative because it does not contain linearization process. However, because both methods are based on Gaussian assumption, performance of estimation can become worse when the distribution of state parameters and process/measurement noise are non-Gaussian. In nonlinear/non-Gaussian problems the particle filter which is based on sequential Monte Carlo methods can guarantee more exact estimation results. This study develops and tests the particle filter for satellite orbit determination. The particle filter can be more effective methods for satellite orbit determination in nonlinear/non-Gaussian environment.

  • PDF

Real Time On-board Orbit Determination Performance Analysis of Low Earth Orbit Satellites (저궤도 위성의 실시간 On-board 궤도 결정 성능 분석)

  • Kim, Eun-Hyouek;Koh, Dong-Wook;Chung, Young-Suk;Park, Sung-Baek;Jin, Hyeun-Pil;Lee, Hyun-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.1
    • /
    • pp.79-87
    • /
    • 2015
  • In this paper, a real time on-board orbit determination method using the extended kalman filter is suggested and its performance is analyzed in the environment of the orbit. Considering the limited on-board resources, the $J_2$ orbit propagate model and the GPS navigation solution are used for on-board orbit determination. The analysis result of the on-board orbit determination method implemented in DubaiSat-2 showed that position and velocity error are improved from 70.26 m to 26.25 m and from 3.6 m/s to 0.044 m/s, respectively when abnormal excursion errors is removed in the GPS navigation solution.

GPS Satellite Orbit Prediction Based on Unscented Kalman Filter

  • Zheng, Zuoya;Chen, Yongqi;Xiushan, Lu;Zhixing, Du
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.191-196
    • /
    • 2006
  • In GPS Positioning, the error of satellite orbit will affect user's position accuracy directly, it is important to determine the satellite orbit precise. The real-time orbit is needed in kinematic GPS positioning, the precise GPS orbit from IGS would be delayed long time, so orbit prediction is key to real-time kinematic positioning. We analyze the GPS predicted ephemeris, on the base of comparison of EKF and UKF, a new orbit prediction method is put forward based on UKF in this paper, the result shows that UKF improves the orbit predicted precision and stability. It offers a new method for others satellites orbit determination as Galileo, and so on.

  • PDF

Angles-Only Initial Orbit Determination of Low Earth Orbit (LEO) Satellites Using Real Observational Data

  • Hwang, Hyewon;Park, Sang-Young;Lee, Eunji
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.187-197
    • /
    • 2019
  • The Optical Wide-field patroL-Network (OWL-Net) is a Korean optical space surveillance system used to track and monitor objects in space. In this study, the characteristics of four Initial Orbit Determination (IOD) methods were analyzed using artificial observational data from Low Earth Orbit satellites, and an appropriate IOD method was selected for use as the initial value of Precise Orbit Determination using OWL-Net data. Various simulations were performed according to the properties of observational data, such as noise level and observational time interval, to confirm the characteristics of the IOD methods. The IOD results produced via the OWL-Net observational data were then compared with Two Line Elements data to verify the accuracy of each IOD method. This paper, thus, suggests the best method for IOD, according to the properties of angles-only data, for use even when the ephemeris of a satellite is unknown.