• Title/Summary/Keyword: real-time network

Search Result 4,424, Processing Time 0.028 seconds

Distance and Probability-based Real Time Transmission Scheme for V2V Protocol using Dynamic CW allocation (V2V 프로토콜에서 실시간 전송을 위한 동적 CW 할당 기법)

  • Kim, Soo-Ro;Kim, Dong-Seong;Lee, Ho-Kyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.2
    • /
    • pp.80-87
    • /
    • 2013
  • This paper proposes a CW (Contention window) allocation scheme for real-time data transmission of emergency data on VANET (Vehicle to vehicle Ad hoc Network, V2V) protocol. The proposed scheme reduces the probability of packet collisions on V2V protocol and provides bandwidth efficiency with short delay of emergency sporadic data. In the case of high density traffic, the proposed scheme provides a decrease of recollision probability using dynamic CW adjustments. For the performance analysis, a throughput, end-to-end delays, and network loads were investigated on highway traffic. Simulation results show the performance enhancements in terms of the throughput, end-to-end delays, and network loads.

An Effective Location-based Packet Scheduling Scheme for Adaptive Tactical Wireless Mesh Network (무선 메쉬 네트워크의 군 환경 적용을 위한 효율적인 위치기반 패킷 스케줄링 방식)

  • Kim, Young-An;Hong, Choong-Seon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.12B
    • /
    • pp.719-727
    • /
    • 2007
  • The Wireless Mesh Network technology is able to provide an infrastructure for isolated islands, in which it is difficult to install cables or wide area such as battlefield of armed forces. Therefore, Wireless Mesh Network is frequently used to satisfy needs for internet connection and active studies and research on them are in progress However, as a result of increase in number of hops under hop-by-hop communication environment has caused a significant decrease in throughput and an increase in delay. Considering the heavy traffic of real-time data, such as voice or moving pictures to adaptive WMN, in a military environment, it is restricted for remote units to have their Mesh Node to get real-time services. Such phenomenon might cause an issue in fairness. In order to resolve this issue, the Location-based Packet Scheduling Scheme, which can provide an fair QoS to each mesh node that is connected to each echelon's AP and operates based on WRR method that gives a priority to emergency message and control packet. The performance of this scheme is validated.

Location Based Reliable Routing Protocol for Tactical Mobile Ad-Hoc Networks (전술 모바일 애드 혹 네트워크를 위한 위치 기반의 신뢰성 제공을 위한 라우팅 방법)

  • Youn, Myungjune;Kang, Tae Hun;Jeon, HahnEarl;Lee, Jaiyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.11
    • /
    • pp.1148-1161
    • /
    • 2012
  • Recently, developments in the field of communication and network technologies induced new paradigm in the defense weapon system. As a consequence, military authorities develop the Tactical Information Communication Network(TICN) system to adapt to the changing paradigm. One of the most important functions of TICN is real-time communication. As a result, TICN system needs to receive real-time information from the battlefield, and the key technology to support these features is MANET(Mobile Ad-Hoc Network) routing protocol. In this paper, we analyze problems of the shortest path scheme in tactical Ad-Hoc networks, which is widely used in common Ad-Hoc networks. We propose efficient routing protocol for tactical MANET by considering the environment of small combat units, such as node position, speed and data size. The proposed algorithm shows reliable data transfer and low latency in battlefield.

A Deep Neural Network Architecture for Real-Time Semantic Segmentation on Embedded Board (임베디드 보드에서 실시간 의미론적 분할을 위한 심층 신경망 구조)

  • Lee, Junyeop;Lee, Youngwan
    • Journal of KIISE
    • /
    • v.45 no.1
    • /
    • pp.94-98
    • /
    • 2018
  • We propose Wide Inception ResNet (WIR Net) an optimized neural network architecture as a real-time semantic segmentation method for autonomous driving. The neural network architecture consists of an encoder that extracts features by applying a residual connection and inception module, and a decoder that increases the resolution by using transposed convolution and a low layer feature map. We also improved the performance by applying an ELU activation function and optimized the neural network by reducing the number of layers and increasing the number of filters. The performance evaluations used an NVIDIA Geforce GTX 1080 and TX1 boards to assess the class and category IoU for cityscapes data in the driving environment. The experimental results show that the accuracy of class IoU 53.4, category IoU 81.8 and the execution speed of $640{\times}360$, $720{\times}480$ resolution image processing 17.8fps and 13.0fps on TX1 board.

Missing Hydrological Data Estimation using Neural Network and Real Time Data Reconciliation (신경망을 이용한 결측 수문자료 추정 및 실시간 자료 보정)

  • Oh, Jae-Woo;Park, Jin-Hyeog;Kim, Young-Kuk
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.10
    • /
    • pp.1059-1065
    • /
    • 2008
  • Rainfall data is the most basic input data to analyze the hydrological phenomena and can be missing due to various reasons. In this research, a neural network based model to estimate missing rainfall data as approximate values was developed for 12 rainfall stations in the Soyang river basin to improve existing methods. This approach using neural network has shown to be useful in many applications to deal with complicated natural phenomena and displayed better results compared to the popular offline estimating methods, such as RDS(Reciprocal Distance Squared) method and AMM(Arithmetic Mean Method). Additionally, we proposed automated data reconciliation systems composed of a neural network learning processer to be capable of real-time reconciliation to transmit reliable hydrological data online.

LoRa LPWAN Sensor Network for Real-Time Monitoring and It's Control Method (실시간 모니터링을 위한 LoRa LPWAN 기반의 센서네트워크 시스템과 그 제어방법)

  • Kim, Jong-Hoon;Park, Won-Joo;Park, Jin-Oh;Park, Sang-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.359-366
    • /
    • 2018
  • Social infrastructure facilities that have been under construction since the country's high-growth period are undergoing rapid aging, and safety assessments of large structures such as bridge tunnels, which can be directly linked to large-scale casualties in the event of an accident, are necessary. Wireless smart sensor networks that improve SHM(Structural Health Monitoring) based on existing wire sensors are difficult to construct economical and efficient system due to short signal reach. The LPWAN, Low Power Wide Area Network, is becoming popular with the Internet of Things and it is possible to construct economical and efficient SHM by applying it to structural health monitoring. This study examines the applicability of LoRa LPWAN to structural health monitoring and proposes a channel usage pre-planning based LoRa network operation method that can efficiently utilize bandwidth while resolving conflicts between channels caused by using license - exempt communication band.

Application for Disaster Prediction of Reservoir Dam Wireless Sensor Network System based on Field Trial Construction (현장 시험시공을 통한 저수지 댐의 재해예측 무선센서 네트워크 시스템 적용성 평가)

  • Yoo, Chanho;Kim, Seungwook;Baek, Seungcheol;Na, Gihyuk;You, Kwangho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.1
    • /
    • pp.19-25
    • /
    • 2019
  • In this present study, to evaluate the applicability of the monitoring system of the entire reservoir dam facility using the wireless sensor network system and a section representative of the domestic reservoir dam was selected as the test bed site and to operated a system that can evaluate the condition of the facility at the real time with monitoring. In order to set up a wireless sensor network system, the system assessment of present state was carried out for confirmation the risk factors and the limit values of the risk factors in limit state were calculated. The type and position of the sensor to be measured in the field were determined by setting the measurement items suitable for the hazardous area and the risk factor. In this paper, we evaluated the feasibility of the system by monitoring and constructing a wireless sensor network system in a field for a fill dam that can represent a domestic reservoir dam. Applicability evaluation was verified by comparing directly with the measurement of partial concentration method which is the measurement management technology of the dam.

The Design and Experiment of AI Device Communication System Equipped with 5G (5G를 탑재한 AI 디바이스 통신 시스템의 설계 및 실험)

  • Han Seongil;Lee Daesik;Han Jihwan;Moon Hhyunjin;Lim Changmin;Lee Sangku
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.2
    • /
    • pp.69-78
    • /
    • 2023
  • In this paper, IO+5G dedicated hardware is developed and an AI device communication system equipped with a 5G is designed and tested. The AI device communication system equipped with a 5G receives the collected real-time images and the information collected from the IoT sensor in real time is to analyze the information and generates the risk detection events in the AI processing board. The event generated in the AI processing board creates a 5G channel in the dedicated hardware equipped with IO+5G. The created 5G channel delivers event video to the control video server. The 5G based dongle network enables faster data collection and more precise data measurement compared to wireless LAN and 5G routers. As a result of the experiment in this paper, the average test result of the 5G dongle network is about 51% faster than the Wi-Fi average test result in downlink and about 40% faster in uplink. In addition, when comparing the test result with terms of the 5G rounter to be set to 80% upload and 20% download, the average test result is that the 5G dongle network is about 11.27% faster when downloading and about 17.93% faster when uploading. when comparing the test result with terms of the the router to be set to 60% upload and 40% download, the 5G dongle network is about 11.19% faster when downlinking and about 13.61% faster when uplinking. Therefore, in this paper it describes that the developed 5G dongle network can improve the results by collecting data and analyzing it faster than wireless LAN and 5G routers.

Distributed simulation on a network as a CIM developing tool (CIM 구축 tool 로서의 네트워크 상의 분산시뮬레이션)

  • 김성식;배경한
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.799-803
    • /
    • 1991
  • This study proposes a CIM shell that is consisted with computers connected by a LAN. Since this system excludes production hardwares, physical movements of devices are represented by computer simulation. On the other hand, softwares that dictate system operation are real, and consu- me physical time. Thus the shell becomes half-real-half-simulation that requires events synchronization mechanism. This study shows the building procedure of such shell as well as an example of application of the shell.

  • PDF

ATM Traffic Analysis: Burst Scale Probability Function

  • Kemelmacher, E.Rozenshine
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.876-879
    • /
    • 2002
  • The paper presents the analysis and results of traffic measurements in the 155 Mbit/s real working ATM backbone network. The traffic is described as an ordered sequence of real-time cells. In this paper we analyze two timescales in which some form of a stochastic process is taking place: cell scale and burst scale. We present another way to describe the cell flow in ATM networks by definition the function, designed to be the probability of the burst of length ∫in n sequential slots.

  • PDF