• Title/Summary/Keyword: real-time network

Search Result 4,424, Processing Time 0.037 seconds

Generalized Sigmidal Basis Function for Improving the Learning Performance fo Multilayer Perceptrons (다층 퍼셉트론의 학습 성능 개선을 위한 일반화된 시그모이드 베이시스 함수)

  • Park, Hye-Yeong;Lee, Gwan-Yong;Lee, Il-Byeong;Byeon, Hye-Ran
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.11
    • /
    • pp.1261-1269
    • /
    • 1999
  • 다층 퍼셉트론은 다양한 응용 분야에 성공적으로 적용되고 있는 대표적인 신경회로망 모델이다. 그러나 다층 퍼셉트론의 학습에서 나타나는 플라토에 기인한 느린 학습 속도와 지역 극소는 실제 응용문제에 적용함에 있어서 가장 큰 문제로 지적되어왔다. 이 문제를 해결하기 위해 여러 가지 다양한 학습알고리즘들이 개발되어 왔으나, 계산의 비효율성으로 인해 실제 문제에는 적용하기 힘든 예가 많은 등, 현재까지 만족할 만한 해결책은 제시되지 못하고 있다. 본 논문에서는 다층퍼셉트론의 베이시스 함수로 사용되는 시그모이드 함수를 보다 일반화된 형태로 정의하여 사용함으로써 학습에 있어서의 플라토를 완화하고, 지역극소에 빠지는 것을 줄이는 접근방법을 소개한다. 본 방법은 기존의 변형된 가중치 수정식을 사용한 학습 속도 향상의 방법들과는 다른 접근 방법을 택함으로써 기존의 방법들과 함께 사용하는 것이 가능하다는 특징을 갖고 있다. 제안하는 방법의 성능을 확인하기 위하여 간단한 패턴 인식 문제들에의 적용 실험 및 기존의 학습 속도 향상 방법을 함께 사용하여 시계열 예측 문제에 적용한 실험을 수행하였고, 그 결과로부터 제안안 방법의 효율성을 확인할 수 있었다. Abstract A multilayer perceptron is the most well-known neural network model which has been successfully applied to various fields of application. Its slow learning caused by plateau and local minima of gradient descent learning, however, have been pointed as the biggest problems in its practical use. To solve such a problem, a number of researches on learning algorithms have been conducted, but it can be said that none of satisfying solutions have been presented so far because the problems such as computational inefficiency have still been existed in these algorithms. In this paper, we propose a new learning approach to minimize the effect of plateau and reduce the possibility of getting trapped in local minima by generalizing the sigmoidal function which is used as the basis function of a multilayer perceptron. Adapting a new approach that differs from the conventional methods with revised updating equation, the proposed method can be used together with the existing methods to improve the learning performance. We conducted some experiments to test the proposed method on simple problems of pattern recognition and a problem of time series prediction, compared our results with the results of the existing methods, and confirmed that the proposed method is efficient enough to apply to the real problems.

Analysis of the Correlation between Social Factors and the Use of Hydrophilic Facilities by Age Group - Case Study at the Samrak and Daejeo Ecological Park (사회적 요인 및 연령대별 친수공원 이용에 관한 상관관계 분석 - 삼락과 대저생태공원을 대상으로)

  • Choi, In-Ho;Lee, Min-Young;Yoon, Hee-Ra;Kim, Seong Jun;Kim, Chang Sung
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.4
    • /
    • pp.273-280
    • /
    • 2021
  • In the past, the government made a total of 357 hydrophilic districts into parks to create rest areas in the national river with the four major river projects. According to the results of the survey, 60 water-friendly districts with low utilization were lifted in January 2017, and 297 water-friendly districts are currently being managed. Local governments are in charge of the maintenance costs necessary to maintain these hydrophilic districts, which require considerable costs, so it is necessary to accurately grasp the characteristics and needs of local residents at the operation stage after designation. In this study, the characteristics of local residents in the hydrophilic district were analyzed by correlating social factors with river users, crawling social network data to analyze visit patterns, and derived related Keywords, and analyzed the characteristics of the hydrophilic district. The study target areas are Samrak and Daejeo Ecological Park, located downstream of the Nakdonggang River. Social factors analyzed real estate transaction price data, economic activity income, households, stress perception rate, and pet breeding status through public data provided by Statistics Korea, and analyzed user visit patterns and image keywords on weekends.

A Design of the Emergency-notification and Driver-response Confirmation System(EDCS) for an autonomous vehicle safety (자율차량 안전을 위한 긴급상황 알림 및 운전자 반응 확인 시스템 설계)

  • Son, Su-Rak;Jeong, Yi-Na
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.2
    • /
    • pp.134-139
    • /
    • 2021
  • Currently, the autonomous vehicle market is commercializing a level 3 autonomous vehicle, but it still requires the attention of the driver. After the level 3 autonomous driving, the most notable aspect of level 4 autonomous vehicles is vehicle stability. This is because, unlike Level 3, autonomous vehicles after level 4 must perform autonomous driving, including the driver's carelessness. Therefore, in this paper, we propose the Emergency-notification and Driver-response Confirmation System(EDCS) for an autonomousvehicle safety that notifies the driver of an emergency situation and recognizes the driver's reaction in a situation where the driver is careless. The EDCS uses the emergency situation delivery module to make the emergency situation to text and transmits it to the driver by voice, and the driver response confirmation module recognizes the driver's reaction to the emergency situation and gives the driver permission Decide whether to pass. As a result of the experiment, the HMM of the emergency delivery module learned speech at 25% faster than RNN and 42.86% faster than LSTM. The Tacotron2 of the driver's response confirmation module converted text to speech about 20ms faster than deep voice and 50ms faster than deep mind. Therefore, the emergency notification and driver response confirmation system can efficiently learn the neural network model and check the driver's response in real time.

An Origin-Centric Communication Scheme to Support Sink Mobility for Continuous Object Detection in IWSNs (산업용 무선 센서망을 이용한 연속개체 탐지에서 이동 싱크 지원을 위한 발원점 중심의 통신방안)

  • Kim, Myung-Eun;Kim, Cheonyong;Yim, Yongbin;Kim, Sang-Ha;Son, Young-Sung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.7 no.12
    • /
    • pp.301-312
    • /
    • 2018
  • In industrial wireless sensor networks, the continuous object detection such as fire or toxic gas detection is one of major applications. A continuous object occurs at a specific point and then diffuses over a wide area. Therefore, many studies have focused on accurately detecting a continuous object and delivering data to a static sink with an energy-efficient way. Recently, some applications such as fire suppression require mobile sinks to provide real-time response. However, the sink mobility support in continuous object detection brings challenging issues. The existing approaches supporting sink mobility are designed for individual object detection, so they establish one-to-one communication between a source and a mobile sink for location update. But these approaches are not appropriate for a continuous object detection since a mobile sink should establish one-to-many communication with all sources. The one-to-many communication increases energy consumption and thus shortens the network lifetime. In this paper, we propose the origin-centric communication scheme to support sink mobility in a continuous object detection. Simulation results verify that the proposed scheme surpasses all the other work in terms of energy consumption.

Accuracy Analysis of GNSS-based Public Surveying and Proposal for Work Processes (GNSS관측 공공측량 정확도 분석 및 업무프로세스 제안)

  • Bae, Tae-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.457-467
    • /
    • 2018
  • Currently, the regulation and rules for public surveying and the UCPs (Unified Control Points) adapts those of the triangulated traverse surveying. In addition, such regulations do not take account of the unique characteristics of GNSS (Global Navigation Satellite System) surveying, thus there are difficulties in field work and data processing afterwards. A detailed procesure of GNSS processing has not yet been described either, and the verification of accuracy does not follow the generic standards. In order to propose an appropriate procedure for field surveys, we processed a short session (30 minutes) based on the scenarios similar to actual situations. The reference network in Seoul was used to process the same data span for 3 days. The temporal variation during the day was evaluated as well. We analyzed the accuracy of the estimated coordinates depending on the parameterization of tropospheric delay, which was compared with the 24-hr static processing results. Estimating the tropospheric delay is advantageous for the accuracy and stability of the coordinates, resulting in about 5 mm and 10 mm of RMSE (Root Mean Squared Error) for horizontal and vertical components, respectively. Based on the test results, we propose a procedure to estimate the daily solution and then combine them to estimate the final solution by applying the minimum constraints (no-net-translation condition). It is necessary to develop a web-based processing system using a high-end softwares. Additionally, it is also required to standardize the ID of the public control points and the UCPs for the automatic GNSS processing.

A Deep Learning-based Hand Gesture Recognition Robust to External Environments (외부 환경에 강인한 딥러닝 기반 손 제스처 인식)

  • Oh, Dong-Han;Lee, Byeong-Hee;Kim, Tae-Young
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.14 no.5
    • /
    • pp.31-39
    • /
    • 2018
  • Recently, there has been active studies to provide a user-friendly interface in a virtual reality environment by recognizing user hand gestures based on deep learning. However, most studies use separate sensors to obtain hand information or go through pre-process for efficient learning. It also fails to take into account changes in the external environment, such as changes in lighting or some of its hands being obscured. This paper proposes a hand gesture recognition method based on deep learning that is strong in external environments without the need for pre-process of RGB images obtained from general webcam. In this paper we improve the VGGNet and the GoogLeNet structures and compared the performance of each structure. The VGGNet and the GoogLeNet structures presented in this paper showed a recognition rate of 93.88% and 93.75%, respectively, based on data containing dim, partially obscured, or partially out-of-sight hand images. In terms of memory and speed, the GoogLeNet used about 3 times less memory than the VGGNet, and its processing speed was 10 times better. The results of this paper can be processed in real-time and used as a hand gesture interface in various areas such as games, education, and medical services in a virtual reality environment.

An Integrated Model for Predicting Changes in Cryptocurrency Return Based on News Sentiment Analysis and Deep Learning (감성분석을 이용한 뉴스정보와 딥러닝 기반의 암호화폐 수익률 변동 예측을 위한 통합모형)

  • Kim, Eunmi
    • Knowledge Management Research
    • /
    • v.22 no.2
    • /
    • pp.19-32
    • /
    • 2021
  • Bitcoin, a representative cryptocurrency, is receiving a lot of attention around the world, and the price of Bitcoin shows high volatility. High volatility is a risk factor for investors and causes social problems caused by reckless investment. Since the price of Bitcoin responds quickly to changes in the world environment, we propose to predict the price volatility of Bitcoin by utilizing news information that provides a variety of information in real-time. In other words, positive news stimulates investor sentiment and negative news weakens investor sentiment. Therefore, in this study, sentiment information of news and deep learning were applied to predict the change in Bitcoin yield. A single predictive model of logit, artificial neural network, SVM, and LSTM was built, and an integrated model was proposed as a method to improve predictive performance. As a result of comparing the performance of the prediction model built on the historical price information and the prediction model reflecting the sentiment information of the news, it was found that the integrated model based on the sentiment information of the news was the best. This study will be able to prevent reckless investment and provide useful information to investors to make wise investments through a predictive model.

Integrated transcriptomic analysis on small yellow follicles reveals that sosondowah ankyrin repeat domain family member A inhibits chicken follicle selection

  • Zhong, Conghao;Liu, Zemin;Qiao, Xibo;Kang, Li;Sun, Yi;Jiang, Yunliang
    • Animal Bioscience
    • /
    • v.34 no.8
    • /
    • pp.1290-1302
    • /
    • 2021
  • Objective: Follicle selection is an important process in chicken egg laying. Among several small yellow (SY) follicles, the one exhibiting the highest expression of follicle stimulation hormone receptor (FSHR) will be selected to become a hierarchal follicle. The role of lncRNA, miRNA and other non-coding RNA in chicken follicle selection is unclear. Methods: In this study, the whole transcriptome sequencing of SY follicles with different expression levels of FSHR in Jining Bairi hens was performed, and the expression of 30 randomly selected mRNAs, lncRNAs and miRNAs was validated by quantitative real-time polymerase chain reaction. Preliminary studies and bioinformatics analysis were performed on the selected mRNA, lncRNA, miRNA and their target genes. The effect of identified gene was examined in the granulosa cells of chicken follicles. Results: Integrated transcriptomic analysis on chicken SY follicles differing in FSHR expression revealed 467 differentially expressed mRNA genes, 134 differentially expressed lncRNA genes and 34 differentially expressed miRNA genes, and sosondowah ankyrin repeat domain family member A (SOWAHA) was the common target gene of three miRNAs and one lncRNA. SOWAHA was mainly expressed in small white (SW) and SY follicles and was affected by follicle stimulation hormone (FSH) treatment in the granulosa cells. Knockdown of SOWAHA inhibited the expression of Wnt family member 4 (Wnt4) and steroidogenic acute regulatory protein (StAR) in the granulosa cells of prehierarchal follicles, while stimulated Wnt4 in hierarchal follicles. Overexpression of SOWAHA increased the expression of Wnt4 in the granulosa cells of prehierarchal follicles, decreased that of StAR and cytochrome P450 family 11 subfamily A member 1 in the granulosa cells of hierarchal follicles and inhibited the proliferation of granulosa cells. Conclusion: Integrated analysis of chicken SY follicle transcriptomes identified SOWAHA as a network gene that is affected by FSH in granulosa cells of ovarian follicles. SOWAHA affected the expression of genes involved in chicken follicle selection and inhibited the proliferation of granulosa cells, suggesting an inhibitory role in chicken follicle selection.

Automatic Bee-Counting System with Dual Infrared Sensor based on ICT (ICT 기반 이중 적외선 센서를 이용한 꿀벌 출입 자동 모니터링 시스템)

  • Son, Jae Deok;Lim, Sooho;Kim, Dong-In;Han, Giyoun;Ilyasov, Rustem;Yunusbaev, Ural;Kwon, Hyung Wook
    • Journal of Apiculture
    • /
    • v.34 no.1
    • /
    • pp.47-55
    • /
    • 2019
  • Honey bees are a vital part of the food chain as the most important pollinators for a broad palette of crops and wild plants. The climate change and colony collapse disorder (CCD) phenomenon make it challenging to develop ICT solutions to predict changes in beehive and alert about potential threats. In this paper, we report the test results of the bee-counting system which stands out against the previous analogues due to its comprehensive components including an improved dual infrared sensor to detect honey bees entering and leaving the hive, environmental sensors that measure ambient and interior, a wireless network with the bluetooth low energy (BLE) to transmit the sensing data in real time to the gateway, and a cloud which accumulate and analyze data. To assess the system accuracy, 3 persons manually counted the outgoing and incoming honey bees using the video record of 360-minute length. The difference between automatic and manual measurements for outgoing and incoming scores were 3.98% and 4.43% respectively. These differences are relatively lower than previous analogues, which inspires a vision that the tested system is a good candidate to use in precise apicultural industry, scientific research and education.

Analysis of the Precedence of Stock Price Variables Using Cultural Content Big Data (문화콘텐츠 빅데이터를 이용한 주가 변수 선행성 분석)

  • Ryu, Jae Pil;Lee, Ji Young;Jeong, Jeong Young
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.4
    • /
    • pp.222-230
    • /
    • 2022
  • Recently, Korea's cultural content industry is developing, and behind the growing recognition around the world is the real-time sharing service of global network users due to the development of science and technology. In particular, in the case of YouTube, its propagation power is fast and powerful in that everyone, not limited users, can become potential video providers. As more than 80% of mobile phone users are using YouTube in Korea, YouTube's information means that psychological factors of users are reflected. For example, information such as the number of video views, likes, and comments of a channel with a specific personality shows a measure of the channel's personality interest. This is highly related to the fact that information such as the frequency of keyword search on portal sites is closely related to the stock market economically and psychologically. Therefore, in this study, YouTube information from a representative entertainment company is collected through a crawling algorithm and analyzed for the causal relationship with major variables related to stock prices. This study is considered meaningful in that it conducted research by combining cultural content, IT, and financial fields in accordance with the era of the fourth industry.