• Title/Summary/Keyword: real-time network

Search Result 4,424, Processing Time 0.032 seconds

A Study on Event Log Correlation Analysis for Control System Threat Analysis (제어시스템 위협분석을 위한 Event Log 상관분석에 관한 연구)

  • Kim, Jongmin;Kim, Minsu;Lee, DongHwi
    • Convergence Security Journal
    • /
    • v.17 no.5
    • /
    • pp.35-40
    • /
    • 2017
  • The control system can have such threats as information leakage and falsification through various routes due to communications network fusion with public network. As the issues about security and the infringe cases by new attack methods are diversified recently, with the security system that makes information data database by simply blocking and checking it is difficult to cope with new types of threats. It is also difficult to respond security threats by insiders who have security access authority with the existing security equipment. To respond the threats by insiders, it is necessary to collect and analyze Event Log occurring in the internal system realtime. Therefore, this study could find out whether there is correlation of the elements among Event Logs through correlation analysis based on Event Logs that occur real time in the control system, and based on the analysis result, the study is expected to contribute to studies in this field.

A Study on Big Data Information System based on Artificial Intelligence -Filmmaker and Focusing on Movie case analysis of 10 million Viewers- (인공지능 기반형 빅데이터 정보시스템에 관한 연구 -영화제작자와 천만 영화 사례분석 중심으로-)

  • Lee, Sang-Yun;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.2
    • /
    • pp.377-388
    • /
    • 2019
  • The system proposed in this paper was suggested as a big data system that works in the age of artificial intelligence of the 4th Industrial Revolution. The proposed system can be a good example in terms of government 's development of new intelligent big data information system. For example, the proposed system may be introduced into the system of a department as a function of the integration of existing cinema ticket integration network or its networking. For this purpose, the proposed system transmits the user's profile to the film producer or other company, where it is provided as comparison data. Soon, the information is sent to the user-specific characteristic data and then the film-maker will be able to gauge the success of the three elements of the movie's performance, cinematic quality, and break-even point in real time, which are revealed through the movie review that the actual user feels, including the so-called 'new reinterpretation.

Flipped Learning: Strategies and Technologies in Higher Education

  • Miziuk, Viktoriia;Berdo, Rimma;Derkach, Larysa;Kanibolotska, Olha;Stadnii, Alla
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.7
    • /
    • pp.63-69
    • /
    • 2021
  • Flipped learning is necessary for modern education but quite difficult to implement. In pedagogical science, the question remains to what extent the practical work of the teacher in combination with the technologies of flipped learning will improve the quality of higher education. The aim of this article is to study the effectiveness and feasibility of using flipped learning technologies, assessing their perception by students (advantages and problems), identified an algorithm for introducing flipped learning technology in higher education institutions. Research methods. The main method is an experiment. An evaluation of the effectiveness of the study was conducted using a questionnaire and observation method. Statistical methods were used to evaluate the results of the experiment. The research hypothesis is that flipped learning allows the teacher to spend more time on an individual approach, to understand the real needs of students, and provide effective feedback, thereby improving the quality of learning and motivation of students, especially while studying complex material. The results of the study are to prove the effectiveness of the technology of flipped education in the study of complex disciplines, courses, topics. The use of flipped learning strategies improves the self-regulation of the educational process, group work skills, improves students' ability to learn, overcome difficulties. The technology of flipped learning in the presence of modern technical means and constant work on improving the level of digital literacy is an effective means for students to master complex topics and problematic issues that require additional consideration and discussion. The perspective of further research is the consideration of integrated approaches to the application of flipped learning technologies to the principles of STEAM-education, multilingual and multicultural programs, etc. It is also worth continuing to develop a set of methods aimed at enhancing the student's learning activities, the formation of group work skills, direct participation in creating the foundations of higher education.

New Obligations of Health Insurance Review and Assessment Service: Taking Full-fledged Action Against the COVID-19 Pandemic

  • Yoo, Seung Mi;Chung, Seol Hee;Jang, Won Mo;Kim, Kyoung Chang;Lee, Jin Yong;Kim, Sun Min
    • Journal of Preventive Medicine and Public Health
    • /
    • v.54 no.1
    • /
    • pp.17-21
    • /
    • 2021
  • In 2020, the coronavirus disease 2019 (COVID-19) pandemic has caused unprecedented disruptions to global health systems. The Korea has taken full-fledged actions against this novel infectious disease, swiftly implementing a testing-tracing-treatment strategy. New obligations have therefore been given to the Health Insurance Review and Assessment Service (HIRA) to devote the utmost effort towards tackling this global health crisis. Thanks to the universal national health insurance and state-of-the-art information communications technology (ICT) of the Korea, HIRA has conducted far-reaching countermeasures to detect and treat cases early, prevent the spread of COVID-19, respond quickly to surging demand for the healthcare services, and translate evidence into policy. Three main factors have enabled HIRA to undertake pandemic control preemptively and systematically: nationwide data aggregated from all healthcare providers and patients, pre-existing ICT network systems, and real-time data exchanges. HIRA has maximized the use of data and pre-existing network systems to conduct rapid and responsive measures in a centralized way, both of which have been the most critical tactics and strategies used by the Korean healthcare system. In the face of new obligations, our promise is to strive for a more responsive and resilient health system during this prolonged crisis.

Speed Prediction of Urban Freeway Using LSTM and CNN-LSTM Neural Network (LSTM 및 CNN-LSTM 신경망을 활용한 도시부 간선도로 속도 예측)

  • Park, Boogi;Bae, Sang hoon;Jung, Bokyung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.1
    • /
    • pp.86-99
    • /
    • 2021
  • One of the methods to alleviate traffic congestion is to increase the efficiency of the roads by providing traffic condition information on road user and distributing the traffic. For this, reliability must be guaranteed, and quantitative real-time traffic speed prediction is essential. In this study, and based on analysis of traffic speed related to traffic conditions, historical data correlated with traffic flow were used as input. We developed an LSTM model that predicts speed in response to normal traffic conditions, along with a CNN-LSTM model that predicts speed in response to incidents. Through these models, we try to predict traffic speeds during the hour in five-minute intervals. As a result, predictions had an average error rate of 7.43km/h for normal traffic flows, and an error rate of 7.66km/h for traffic incident flows when there was an incident.

Improved real-time power analysis attack using CPA and CNN

  • Kim, Ki-Hwan;Kim, HyunHo;Lee, Hoon Jae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.1
    • /
    • pp.43-50
    • /
    • 2022
  • Correlation Power Analysis(CPA) is a sub-channel attack method that measures the detailed power consumption of attack target equipment equipped with cryptographic algorithms and guesses the secret key used in cryptographic algorithms with more than 90% probability. Since CPA performs analysis based on statistics, a large amount of data is necessarily required. Therefore, the CPA must measure power consumption for at least about 15 minutes for each attack. In this paper proposes a method of using a Convolutional Neural Network(CNN) capable of accumulating input data and predicting results to solve the data collection problem of CPA. By collecting and learning the power consumption of the target equipment in advance, entering any power consumption can immediately estimate the secret key, improving the computational speed and 96.7% of the secret key estimation accuracy.

A Study on the Expansion and Improvement of the Tactical Data Link Processing Structure for Link-22 SNC Interface (Link-22 SNC 연동을 위한 전술데이터링크 처리 구조 확장 개선 연구)

  • Jung, Suk-Ho;Hwang, Jung-Eun;Lee, Youn-Jeong;Park, Ji-Hyeon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1045-1052
    • /
    • 2021
  • Modern Warfare is transforming into a Network Centric Warfare(NCW) where surveillance systems, command control systems and strike systems are interconnected with advanced IT technologies to share battlefield situations. The South Korean military is using the various tactical data links(TDL) such as Link-K, Link-16, Link-11 and KVMF depending on each military's battlefield situation. Joint Tactical Data Link System(JTDLS) is a system thar shares tactical information in near-real time between army/navy/air joint forces and additionally establishes Link-22 in Link-K, Link-16 and KVMF. In this paper, we propose the Link-22 system structure, Link-22 message analysis and the interface structure between the tactical data link processor and Link-22 to apply Link-22 to the JTDLS.

Hazelcast Vs. Ignite: Opportunities for Java Programmers

  • Maxim, Bartkov;Tetiana, Katkova;S., Kruglyk Vladyslav;G., Murtaziev Ernest;V., Kotova Olha
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.406-412
    • /
    • 2022
  • Storing large amounts of data has always been a big problem from the beginning of computing history. Big Data has made huge advancements in improving business processes by finding the customers' needs using prediction models based on web and social media search. The main purpose of big data stream processing frameworks is to allow programmers to directly query the continuous stream without dealing with the lower-level mechanisms. In other words, programmers write the code to process streams using these runtime libraries (also called Stream Processing Engines). This is achieved by taking large volumes of data and analyzing them using Big Data frameworks. Streaming platforms are an emerging technology that deals with continuous streams of data. There are several streaming platforms of Big Data freely available on the Internet. However, selecting the most appropriate one is not easy for programmers. In this paper, we present a detailed description of two of the state-of-the-art and most popular streaming frameworks: Apache Ignite and Hazelcast. In addition, the performance of these frameworks is compared using selected attributes. Different types of databases are used in common to store the data. To process the data in real-time continuously, data streaming technologies are developed. With the development of today's large-scale distributed applications handling tons of data, these databases are not viable. Consequently, Big Data is introduced to store, process, and analyze data at a fast speed and also to deal with big users and data growth day by day.

Efficient Object Recognition by Masking Semantic Pixel Difference Region of Vision Snapshot for Lightweight Embedded Systems (경량화된 임베디드 시스템에서 의미론적인 픽셀 분할 마스킹을 이용한 효율적인 영상 객체 인식 기법)

  • Yun, Heuijee;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.6
    • /
    • pp.813-826
    • /
    • 2022
  • AI-based image processing technologies in various fields have been widely studied. However, the lighter the board, the more difficult it is to reduce the weight of image processing algorithm due to a lot of computation. In this paper, we propose a method using deep learning for object recognition algorithm in lightweight embedded boards. We can determine the area using a deep neural network architecture algorithm that processes semantic segmentation with a relatively small amount of computation. After masking the area, by using more accurate deep learning algorithm we could operate object detection with improved accuracy for efficient neural network (ENet) and You Only Look Once (YOLO) toward executing object recognition in real time for lightweighted embedded boards. This research is expected to be used for autonomous driving applications, which have to be much lighter and cheaper than the existing approaches used for object recognition.

Research Trend of the Remote Sensing Image Analysis Using Deep Learning (딥러닝을 이용한 원격탐사 영상분석 연구동향)

  • Kim, Hyungwoo;Kim, Minho;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.819-834
    • /
    • 2022
  • Artificial Intelligence (AI) techniques have been effectively used for image classification, object detection, and image segmentation. Along with the recent advancement of computing power, deep learning models can build deeper and thicker networks and achieve better performance by creating more appropriate feature maps based on effective activation functions and optimizer algorithms. This review paper examined technical and academic trends of Convolutional Neural Network (CNN) and Transformer models that are emerging techniques in remote sensing and suggested their utilization strategies and development directions. A timely supply of satellite images and real-time processing for deep learning to cope with disaster monitoring will be required for future work. In addition, a big data platform dedicated to satellite images should be developed and integrated with drone and Closed-circuit Television (CCTV) images.