• Title/Summary/Keyword: real-time network

Search Result 4,424, Processing Time 0.031 seconds

Correspondence Strategy for Big Data's New Customer Value and Creation of Business (빅 데이터의 새로운 고객 가치와 비즈니스 창출을 위한 대응 전략)

  • Koh, Joon-Cheol;Lee, Hae-Uk;Jeong, Jee-Youn;Kim, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.4
    • /
    • pp.229-238
    • /
    • 2012
  • Within last 10 years, internet has become a daily activity, and humankind had to face the Data Deluge, a dramatic increase of digital data (Economist 2012). Due to exponential increase in amount of digital data, large scale data has become a big issue and hence the term 'big data' appeared. There is no official agreement in quantitative and detailed definition of the 'big data', but the meaning is expanding to its value and efficacy. Big data not only has the standardized personal information (internal) like customer information, but also has complex data of external, atypical, social, and real time data. Big data's technology has the concept that covers wide range technology, including 'data achievement, save/manage, analysis, and application'. To define the connected technology of 'big data', there are Big Table, Cassandra, Hadoop, MapReduce, Hbase, and NoSQL, and for the sub-techniques, Text Mining, Opinion Mining, Social Network Analysis, Cluster Analysis are gaining attention. The three features that 'bid data' needs to have is about creating large amounts of individual elements (high-resolution) to variety of high-frequency data. Big data has three defining features of volume, variety, and velocity, which is called the '3V'. There is increase in complexity as the 4th feature, and as all 4features are satisfied, it becomes more suitable to a 'big data'. In this study, we have looked at various reasons why companies need to impose 'big data', ways of application, and advanced cases of domestic and foreign applications. To correspond effectively to 'big data' revolution, paradigm shift in areas of data production, distribution, and consumption is needed, and insight of unfolding and preparing future business by considering the unpredictable market of technology, industry environment, and flow of social demand is desperately needed.

Text Mining and Visualization of Unstructured Data Using Big Data Analytical Tool R (빅데이터 분석 도구 R을 이용한 비정형 데이터 텍스트 마이닝과 시각화)

  • Nam, Soo-Tai;Shin, Seong-Yoon;Jin, Chan-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.9
    • /
    • pp.1199-1205
    • /
    • 2021
  • In the era of big data, not only structured data well organized in databases, but also the Internet, social network services, it is very important to effectively analyze unstructured big data such as web documents, e-mails, and social data generated in real time in mobile environment. Big data analysis is the process of creating new value by discovering meaningful new correlations, patterns, and trends in big data stored in data storage. We intend to summarize and visualize the analysis results through frequency analysis of unstructured article data using R language, a big data analysis tool. The data used in this study was analyzed for total 104 papers in the Mon-May 2021 among the journals of the Korea Institute of Information and Communication Engineering. In the final analysis results, the most frequently mentioned keyword was "Data", which ranked first 1,538 times. Therefore, based on the results of the analysis, the limitations of the study and theoretical implications are suggested.

Crowd Behavior Detection using Convolutional Neural Network (컨볼루션 뉴럴 네트워크를 이용한 군중 행동 감지)

  • Ullah, Waseem;Ullah, Fath U Min;Baik, Sung Wook;Lee, Mi Young
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.15 no.6
    • /
    • pp.7-14
    • /
    • 2019
  • The automatic monitoring and detection of crowd behavior in the surveillance videos has obtained significant attention in the field of computer vision due to its vast applications such as security, safety and protection of assets etc. Also, the field of crowd analysis is growing upwards in the research community. For this purpose, it is very necessary to detect and analyze the crowd behavior. In this paper, we proposed a deep learning-based method which detects abnormal activities in surveillance cameras installed in a smart city. A fine-tuned VGG-16 model is trained on publicly available benchmark crowd dataset and is tested on real-time streaming. The CCTV camera captures the video stream, when abnormal activity is detected, an alert is generated and is sent to the nearest police station to take immediate action before further loss. We experimentally have proven that the proposed method outperforms over the existing state-of-the-art techniques.

A New Head Pose Estimation Method based on Boosted 3-D PCA (새로운 Boosted 3-D PCA 기반 Head Pose Estimation 방법)

  • Lee, Kyung-Min;Lin, Chi-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.105-109
    • /
    • 2021
  • In this paper, we evaluate Boosted 3-D PCA as a Dataset and evaluate its performance. After that, we will analyze the network features and performance. In this paper, the learning was performed using the 300W-LP data set using the same learning method as Boosted 3-D PCA, and the evaluation was evaluated using the AFLW2000 data set. The results show that the performance is similar to that of the Boosted 3-D PCA paper. This performance result can be learned using the data set of face images freely than the existing Landmark-to-Pose method, so that the poses can be accurately predicted in real-world situations. Since the optimization of the set of key points is not independent, we confirmed the manual that can reduce the computation time. This analysis is expected to be a very important resource for improving the performance of network boosted 3-D PCA or applying it to various application domains.

Optimization of Data Placement using Principal Component Analysis based Pareto-optimal method for Multi-Cloud Storage Environment

  • Latha, V.L. Padma;Reddy, N. Sudhakar;Babu, A. Suresh
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.248-256
    • /
    • 2021
  • Now that we're in the big data era, data has taken on a new significance as the storage capacity has exploded from trillion bytes to petabytes at breakneck pace. As the use of cloud computing expands and becomes more commonly accepted, several businesses and institutions are opting to store their requests and data there. Cloud storage's concept of a nearly infinite storage resource pool makes data storage and access scalable and readily available. The majority of them, on the other hand, favour a single cloud because of the simplicity and inexpensive storage costs it offers in the near run. Cloud-based data storage, on the other hand, has concerns such as vendor lock-in, privacy leakage and unavailability. With geographically dispersed cloud storage providers, multicloud storage can alleviate these dangers. One of the key challenges in this storage system is to arrange user data in a cost-effective and high-availability manner. A multicloud storage architecture is given in this study. Next, a multi-objective optimization problem is defined to minimise total costs and maximise data availability at the same time, which can be solved using a technique based on the non-dominated sorting genetic algorithm II (NSGA-II) and obtain a set of non-dominated solutions known as the Pareto-optimal set.. When consumers can't pick from the Pareto-optimal set directly, a method based on Principal Component Analysis (PCA) is presented to find the best answer. To sum it all up, thorough tests based on a variety of real-world cloud storage scenarios have proven that the proposed method performs as expected.

Implementation Wireless Internet Security Connection System Using Bluetooth Beacon in Smart Factory (블루투스 비컨을 사용한 스마트 팩토리에서의 무선인터넷 보안 연결 시스템 구현)

  • Jang, Yun Seong;Shin, Soo Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.12
    • /
    • pp.1705-1713
    • /
    • 2018
  • It is currently undergoing the fourth industrial revolution, which is the convergence of ICT and manufacturing, connecting both industrial equipment and production processes to one network and communicating with each other. The fact that they are connected to one network has the advantage of management, but there is a risk of security. In particular, Wi-Fi can be easily accessed by outsiders through a software change of the MAC address or password exposures. In this paper, by applying the method of Beacon using a Bluetooth Low Energy Add in Bluetooth 4.0, we propose a system of black-box approach to secure connections to wireless Internet, users do not have to know the password. We also implemented the proposed system using the raspberry pi and verified the effectiveness of a real-time system by testing the communication.

3D Virtual Reality Game with Deep Learning-based Hand Gesture Recognition (딥러닝 기반 손 제스처 인식을 통한 3D 가상현실 게임)

  • Lee, Byeong-Hee;Oh, Dong-Han;Kim, Tae-Young
    • Journal of the Korea Computer Graphics Society
    • /
    • v.24 no.5
    • /
    • pp.41-48
    • /
    • 2018
  • The most natural way to increase immersion and provide free interaction in a virtual environment is to provide a gesture interface using the user's hand. However, most studies about hand gesture recognition require specialized sensors or equipment, or show low recognition rates. This paper proposes a three-dimensional DenseNet Convolutional Neural Network that enables recognition of hand gestures with no sensors or equipment other than an RGB camera for hand gesture input and introduces a virtual reality game based on it. Experimental results on 4 static hand gestures and 6 dynamic hand gestures showed that they could be used as real-time user interfaces for virtual reality games with an average recognition rate of 94.2% at 50ms. Results of this research can be used as a hand gesture interface not only for games but also for education, medicine, and shopping.

A Digital Secret File Leakage Prevention System via Hadoop-based User Behavior Analysis (하둡 기반의 사용자 행위 분석을 통한 기밀파일 유출 방지 시스템)

  • Yoo, Hye-Rim;Shin, Gyu-Jin;Yang, Dong-Min;Lee, Bong-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.11
    • /
    • pp.1544-1553
    • /
    • 2018
  • Recently internal information leakage in industries is severely increasing in spite of industry security policy. Thus, it is essential to prepare an information leakage prevention measure by industries. Most of the leaks result from the insiders, not from external attacks. In this paper, a real-time internal information leakage prevention system via both storage and network is implemented in order to protect confidential file leakage. In addition, a Hadoop-based user behavior analysis and statistics system is designed and implemented for storing and analyzing information log data in industries. The proposed system stores a large volume of data in HDFS and improves data processing capability using RHive, consequently helps the administrator recognize and prepare the confidential file leak trials. The implemented audit system would be contributed to reducing the damage caused by leakage of confidential files inside of the industries via both portable data media and networks.

A Study On HTTP-based Dual-Streaming System (HTTP기반의 듀얼스트리밍 시스템 설계)

  • Ban, Tae-Hak;Kim, Eung-Yeol;Xu, Ya-Nan;Jung, Hoe-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.571-573
    • /
    • 2014
  • In today's technology streaming service's QoS technologiey is an issue. On quality video streaming service there are some technical issues exist, such as buffering. This submission is "Adaptive dual-streaming system design" which is for the integrity of the data streaming that is sent to TCP and UDP for faster transmission of data to the stream. This system provides real-time incoming video encoding in bitrate of h.264-based H through a process based on the video footage of several server and client-to-TCP and UDP via Adaptive providing streaming services in a network environment. This is an unspecified number of buffers in a network environment and continued through the minimization of various streaming for playback of videos and multimedia will be utilized in the field.

  • PDF

Comparison of Power Consumption Prediction Scheme Based on Artificial Intelligence (인공지능 기반 전력량예측 기법의 비교)

  • Lee, Dong-Gu;Sun, Young-Ghyu;Kim, Soo-Hyun;Sim, Issac;Hwang, Yu-Min;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.4
    • /
    • pp.161-167
    • /
    • 2019
  • Recently, demand forecasting techniques have been actively studied due to interest in stable power supply with surging power demand, and increase in spread of smart meters that enable real-time power measurement. In this study, we proceeded the deep learning prediction model experiments which learns actual measured power usage data of home and outputs the forecasting result. And we proceeded pre-processing with moving average method. The predicted value made by the model is evaluated with the actual measured data. Through this forecasting, it is possible to lower the power supply reserve ratio and reduce the waste of the unused power. In this paper, we conducted experiments on three types of networks: Multi Layer Perceptron (MLP), Recurrent Neural Network (RNN), and Long Short Term Memory (LSTM) and we evaluate the results of each scheme. Evaluation is conducted with following method: MSE(Mean Squared Error) method and MAE(Mean Absolute Error).