• Title/Summary/Keyword: real-time network

Search Result 4,424, Processing Time 0.04 seconds

A Study on Traffic Monitoring System between Different Network Providers for Delay Interval Measurement (이종망사업자망간 구간 지연시간 측정을 위한 트래픽 모니터링 방안 연구)

  • Kim, Hyun-Jong;Choi, Seong-Gon
    • Annual Conference of KIPS
    • /
    • 2011.04a
    • /
    • pp.611-614
    • /
    • 2011
  • 본 논문에서 우리는 이종사업자망이 연동된 통합망 환경에서 네트워크 성능 저하 구간을 탐색하기 위해 RTCP(Real-time Transport Control Protocol)의 타임스탬프 정보를 이용한 네트워크 구간별 지연 시간을 측정할 수 있는 트래픽 모니터링 방안을 제안한다. 실시간 멀티미디어 서비스(IPTV, VoIP)의 이용이 증가함에 따라 이종망간 연동 환경에서 실시간 서비스에 대한 QoS 관리 방안이 반드시 필요하다. 영상회의, VoIP(Voice over IP) 및 IPTV 서비스와 같은 멀티미디어 서비스는 네트워크 성능(지연, 지연변이 및 패킷 손실)에 매우 민감하기 때문에 연동망 환경에서 서비스 품질이 저하될 경우 어느 네트워크 구간에서 성능 저하가 발생하였는지 탐색하는 것은 매우 중요한 문제이다. 이에 우리는 RTCP 패킷을 이용한 구간별 지연시간 측정 방안을 제안하며 이 방안을 통해 네트워크 성능 저하가 발생한 구간을 탐색하고 정의할 수 있다.

Real-time Stream Data Monitoring Using Windows (윈도우를 이용한 스트림 데이터의 실시간 모니터링 기법)

  • Han, Xiaoyue;Choi, Ok-Ju;Lee, Min-Soo
    • Annual Conference of KIPS
    • /
    • 2011.04a
    • /
    • pp.1231-1233
    • /
    • 2011
  • WBAN(Wireless Body Area Network)과 같은 스트림 데이터의 환경에서는 데이터가 아닌 질의들이 등록되어 있고 데이터들이 끊임없이 시스템에 도착한다. 때문에 도착한 데이터에 대해서 처리할 수 있는 질의만을 찾아 해당 질의들만을 수행하도록 해서 시스템의 질의 부담을 덜어주는 방법이 필요하다. 기존의 단순하고 단편적인 질의의 문제점을 해결하고자 본 연구에서는 Interval Skip List 자료 구조와 시간기반 윈도우를 이용하여 효율적인 실시간 모니터링 시스템을 구현하였다. 특히 산소포화도 생체 센서들로부터 연속적으로 전송되는 스트림 데이터에 대해 다양한 조건을 포함하는 질의들이 실행 되는데 이러한 실시간 모니터링 질의들을 효율적으로 식별하기 위한 질의 인덱스를 설계하였다.

Face Mask Detection using Neural Network in Real Time Video Surveillance (실시간 영상 기반 신경망을 이용한 마스크 착용 감지 시스템)

  • Go, Geon-Hyeok;Choe, Seong-Jin;Song, Do-Hun;Park, Jong-Il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.208-211
    • /
    • 2021
  • 본 논문에서는 합성곱 신경망을 활용하여 영상에서 마스크 착용 및 미착용 상태를 탐지하는 방법을 제안한다. 코로나바이러스감염증-19(COVID-19)의 유행에 따라 감염 및 확산방지를 위해 마스크 정상적 착용이 요구되는데 몇몇 사람들은 이를 지키지 않고 있으며 현재의 감시 시스템은 입구에서 마스크 착용 여부를 검사하는 방식으로 작동될 뿐 공간에 입장한 다음 착용 여부를 알 수 없다. 제안하는 방법은 합성곱 신경망을 통해 영상에서 얼굴을 탐지하여 얻은 데이터를 이용하여 다수사람들의 마스크 착용 및 미착용 상태를 판별하는 방법으로 설계하였다.

  • PDF

Real-Time Lip Reading System Implementation Based on Deep Learning (딥러닝 기반의 실시간 입모양 인식 시스템 구현)

  • Cho, Dong-Hun;Kim, Won-Jun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.267-269
    • /
    • 2020
  • 입모양 인식(Lip Reading) 기술은 입술 움직임을 통해 발화를 분석하는 기술이다. 본 논문에서는 일상적으로 사용하는 10개의 상용구에 대해서 발화자의 안면 움직임 분석을 통해 실시간으로 분류하는 연구를 진행하였다. 시간상의 연속된 순서를 가진 영상 데이터의 특징을 고려하여 3차원 합성곱 신경망 (Convolutional Neural Network)을 사용하여 진행하였지만, 실시간 시스템 구현을 위해 연산량 감소가 필요했다. 이를 해결하기 위해 차 영상을 이용한 2차원 합성곱 신경망과 LSTM 순환 신경망 (Long Short-Term Memory) 결합 모델을 설계하였고, 해당 모델을 이용하여 실시간 시스템 구현에 성공하였다.

  • PDF

Deep Learning-based Real-Time Super-Resolution Architecture Design (경량화된 딥러닝 구조를 이용한 실시간 초고해상도 영상 생성 기술)

  • Ahn, Saehyun;Kang, Suk-Ju
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.228-229
    • /
    • 2020
  • 최근 딥러닝 기술은 여러 컴퓨터 비전 응용 분야에서 많이 쓰이고 있다. 물체 인식, 분류 및 영상 생성 등을 예로 들 수 있다. 특히 초고해상도 변환 문제에서 최근 딥러닝을 사용하면서 큰 성능 개선을 얻고 있다. Fast super-resolution convolutional neural network (FSRCNN)은 딥러닝 기반 초고해상도 알고리즘으로 잘 알려져 있으며, 여러 개의 convolutional layer로 추출한 저 해상도의 입력 특징을 활용하여 deconvolutional layer에서 초고해상도의 영상을 출력하는 알고리즘이다. 본 논문에서는 병렬 연산 효율성을 고려한 FPGA 기반 convolutional neural networks 가속기를 제안한다. 특히 deconvolutional layer를 convolutional layer로 변환하는 방법을 통해서 에너지 효율적인 가속기를 설계했다. 또한 제안한 방법은 FPGA 리소스를 고려하여 FSRCNN의 구조를 변형한 Optimal-FSRCNN을 제안한다. 사용하는 곱셈기의 개수를 FSRCNN 대비 2.4 배 압축하였고, 초고해상도 변환 성능을 평가하는 지표인 PSNR은 FSRCNN과 비슷한 성능을 내고 있다. 이를 통해서 FPGA 에 최적화된 네트워크를 구현하여 FHD 입력 영상을 UHD 영상으로 출력하는 실시간 영상처리 기술을 개발했다.

  • PDF

Dynamic Fog-Cloud Task Allocation Strategy for Smart City Applications

  • Salim, Mikail Mohammed;Kang, Jungho;Park, Jong Hyuk
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.128-130
    • /
    • 2021
  • Smart cities collect data from thousands of IoT-based sensor devices for intelligent application-based services. Centralized cloud servers support application tasks with higher computation resources but introduce network latency. Fog layer-based data centers bring data processing at the edge, but fewer available computation resources and poor task allocation strategy prevent real-time data analysis. In this paper, tasks generated from devices are distributed as high resource and low resource intensity tasks. The novelty of this research lies in deploying a virtual node assigned to each cluster of IoT sensor machines serving a joint application. The node allocates tasks based on the task intensity to either cloud-computing or fog computing resources. The proposed Task Allocation Strategy provides seamless allocation of jobs based on process requirements.

A Study on Classification Network at Edge Device for Real-time Environment Recognition of Walking Assistant Robot (보행 보조 로봇의 실시간 환경 인식을 위한 엣지 디바이스에서의 분류 네트워크에 관한 연구)

  • Shin, Hye-Soo;Lee, Jongwon;Kim, KangGeon
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.435-437
    • /
    • 2022
  • 보행 보조 로봇의 효과적인 보조를 위해서는 사용자의 보행 유형을 인식하는 것이 중요하다. 본 논문에서는 end-to-end 분류 네트워크 기반 보행 환경 인식 방법을 사용하여 사용자의 보행 유형을 강인하게 추정한다. 실외 보행 환경을 오르막길, 평지, 내리막길 3 가지로 분류하는 딥러닝 모델을 학습시켰으며, 엣지 디바이스에서 이를 사용하기 위해 네트워크 경량화를 진행하였다. 경량화 후 추론 속도는 약 47FPS 수준으로 실시간으로 보행 보조 로봇에 적용 가능한 것을 검증했으며, 정확도 측면에서도 97% 이상의 성능을 얻을 수 있었다.

Online-Exam Cheating Detection Service Using Real-time Video Data and Network System Analysis (실시간 영상자료 및 네트워크 시스템 분석을 이용한 온라인 시험 부정행위 탐지 서비스)

  • U-gyeong Kim;Jeong-Hyeon Kim;Yu-jung Lee
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.286-287
    • /
    • 2023
  • 본 논문에서는 기존에 시행되어 온 부정행위 방지 방안들의 한계점을 파악해 개선점을 연구하고, 온라인 시험에서의 부정행위 탐지 서비스를 제안한다. 실제 대학에서 적용 가능한 구체적인 방안을 제시하여 온라인 시험의 신뢰성과 공정성을 높이는 데 기여할 것으로 기대된다.

A fast and simplified crack width quantification method via deep Q learning

  • Xiong Peng;Kun Zhou;Bingxu Duan;Xingu Zhong;Chao Zhao;Tianyu Zhang
    • Smart Structures and Systems
    • /
    • v.32 no.4
    • /
    • pp.219-233
    • /
    • 2023
  • Crack width is an important indicator to evaluate the health condition of the concrete structure. The crack width is measured by manual using crack width gauge commonly, which is time-consuming and laborious. In this paper, we have proposed a fast and simplified crack width quantification method via deep Q learning and geometric calculation. Firstly, the crack edge is extracted by using U-Net network and edge detection operator. Then, the intelligent decision of is made by the deep Q learning model. Further, the geometric calculation method based on endpoint and curvature extreme point detection is proposed. Finally, a case study is carried out to demonstrate the effectiveness of the proposed method, achieving high precision in the real crack width quantification.

Real-time Network Traffic Monitoring using Frequent Itemset Mining (빈발항목 탐색 기법을 이용한 실시간 네트워크 트래픽 모니터링 방법)

  • Lee, Jae-Woo;Lee, Won-Suk
    • Annual Conference of KIPS
    • /
    • 2008.05a
    • /
    • pp.193-196
    • /
    • 2008
  • 네트워크 인프라가 급속히 발전하면서 네트워크 상에서 발생되는 트래픽을 관리하기 위해 마이닝 기법을 적용하려는 여러 연구가 활발히 진행되고 있다. 그러나 기존의 방법들은 DBMS를 이용하여 개개의 플로우를 저장 후 분석하는 방식을 채택함으로써 엄청난 부하와 실시간 마이닝을 어렵게 하는 문제점이 있다. 본 논문에서는 제한된 크기의 메모리를 사용하여 실시간으로 발생하는 네트워크 플로우 데이터 중 빈발한 플로우를 추출하는 방법을 제안한다. 오직 빈발하게 발생하는 플오우만을 메모리에서 모니터링 트리를 사용하여 관리함으로써 메모리를 효율적으로 사용한다. 제안 된 방법은 기존의 방법들과 비교할 때 적은 시스템 부하를 주면서 초고대역폭의 트래픽을 실시간으로 모니터링 할 수 있다.