• Title/Summary/Keyword: real-time network

Search Result 4,424, Processing Time 0.035 seconds

A Study on Design of Real-time Big Data Collection and Analysis System based on OPC-UA for Smart Manufacturing of Machine Working

  • Kim, Jaepyo;Kim, Youngjoo;Kim, Seungcheon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.121-128
    • /
    • 2021
  • In order to design a real time big data collection and analysis system of manufacturing data in a smart factory, it is important to establish an appropriate wired/wireless communication system and protocol. This paper introduces the latest communication protocol, OPC-UA (Open Platform Communication Unified Architecture) based client/server function, applied user interface technology to configure a network for real-time data collection through IoT Integration. Then, Database is designed in MES (Manufacturing Execution System) based on the analysis table that reflects the user's requirements among the data extracted from the new cutting process automation process, bush inner diameter indentation measurement system and tool monitoring/inspection system. In summary, big data analysis system introduced in this paper performs SPC (statistical Process Control) analysis and visualization analysis with interface of OPC-UA-based wired/wireless communication. Through AI learning modeling with XGBoost (eXtream Gradient Boosting) and LR (Linear Regression) algorithm, quality and visualization analysis is carried out the storage and connection to the cloud.

Design and Analysis of Real-time Intrusion Detection Model for Distributed Environment (분산환경을 위한 실시간 침입 탐지 모델의 설계)

  • 이문구;전문석
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.9 no.1
    • /
    • pp.71-84
    • /
    • 1999
  • The most of intrusion detection methods do not detect intrusion when it happens. To solve the problem, we are studying a real-time intrusion detection. Because a previous intrusion detection system(IDS) is running on the host level, it difficult to port and to extend to other system on the network level that distributed environment. Also IDS provides the confidentiality of messages when it sends each other. This paper proposes a model of real-time intrusion detection using agents. It applies to distributed environment using an extensibility and communication mechanism among agents, supports a portability, an extensibility and a confidentiality of IDS.

Data Collection Management Program for Smart Factory (스마트팩토리를 위한 데이터 수집 관리 프로그램 개발)

  • Kim, Hyeon-Jin;Kim, Jin-Sa
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.509-515
    • /
    • 2022
  • As the 4th industrial revolution based on ICT is progressing in the manufacturing field, interest in building smart factories that can be flexible and customized according to customer demand is increasing. To this end, it is necessary to maximize the efficiency of factory by performing an automated process in real time through a network communication between engineers and equipment to be able to link the established IT system. It is also necessary to collect and store real-time data from heterogeneous facilities and to analyze and visualize a vast amount of data to utilize necessary information. Therefore, in this study, four types of controllers such as PLC, Arduino, Raspberry Pi, and embedded system, which are generally used to build a smart factory that can connect technologies such as artificial intelligence (AI), Internet of Things (IoT), and big data, are configured. This study was conducted for the development of a program that can collect and store data in real time to visualize and manage information. For communication verification by controller, data communication was implemented and verified with the data log in the program, and 3D monitoring was implemented and verified to check the process status such as planned quantity for each controller, actual quantity, production progress, operation rate, and defect rate.

A Real Time Traffic Flow Model Based on Deep Learning

  • Zhang, Shuai;Pei, Cai Y.;Liu, Wen Y.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2473-2489
    • /
    • 2022
  • Urban development has brought about the increasing saturation of urban traffic demand, and traffic congestion has become the primary problem in transportation. Roads are in a state of waiting in line or even congestion, which seriously affects people's enthusiasm and efficiency of travel. This paper mainly studies the discrete domain path planning method based on the flow data. Taking the traffic flow data based on the highway network structure as the research object, this paper uses the deep learning theory technology to complete the path weight determination process, optimizes the path planning algorithm, realizes the vehicle path planning application for the expressway, and carries on the deployment operation in the highway company. The path topology is constructed to transform the actual road information into abstract space that the machine can understand. An appropriate data structure is used for storage, and a path topology based on the modeling background of expressway is constructed to realize the mutual mapping between the two. Experiments show that the proposed method can further reduce the interpolation error, and the interpolation error in the case of random missing is smaller than that in the other two missing modes. In order to improve the real-time performance of vehicle path planning, the association features are selected, the path weights are calculated comprehensively, and the traditional path planning algorithm structure is optimized. It is of great significance for the sustainable development of cities.

A Distributed Real-time 3D Pose Estimation Framework based on Asynchronous Multiviews

  • Taemin, Hwang;Jieun, Kim;Minjoon, Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.559-575
    • /
    • 2023
  • 3D human pose estimation is widely applied in various fields, including action recognition, sports analysis, and human-computer interaction. 3D human pose estimation has achieved significant progress with the introduction of convolutional neural network (CNN). Recently, several researches have proposed the use of multiview approaches to avoid occlusions in single-view approaches. However, as the number of cameras increases, a 3D pose estimation system relying on a CNN may lack in computational resources. In addition, when a single host system uses multiple cameras, the data transition speed becomes inadequate owing to bandwidth limitations. To address this problem, we propose a distributed real-time 3D pose estimation framework based on asynchronous multiple cameras. The proposed framework comprises a central server and multiple edge devices. Each multiple-edge device estimates a 2D human pose from its view and sendsit to the central server. Subsequently, the central server synchronizes the received 2D human pose data based on the timestamps. Finally, the central server reconstructs a 3D human pose using geometrical triangulation. We demonstrate that the proposed framework increases the percentage of detected joints and successfully estimates 3D human poses in real-time.

AI-BASED Monitoring Of New Plant Growth Management System Design

  • Seung-Ho Lee;Seung-Jung Shin
    • International journal of advanced smart convergence
    • /
    • v.12 no.3
    • /
    • pp.104-108
    • /
    • 2023
  • This paper deals with research on innovative systems using Python-based artificial intelligence technology in the field of plant growth monitoring. The importance of monitoring and analyzing the health status and growth environment of plants in real time contributes to improving the efficiency and quality of crop production. This paper proposes a method of processing and analyzing plant image data using computer vision and deep learning technologies. The system was implemented using Python language and the main deep learning framework, TensorFlow, PyTorch. A camera system that monitors plants in real time acquires image data and provides it as input to a deep neural network model. This model was used to determine the growth state of plants, the presence of pests, and nutritional status. The proposed system provides users with information on plant state changes in real time by providing monitoring results in the form of visual or notification. In addition, it is also used to predict future growth conditions or anomalies by building data analysis and prediction models based on the collected data. This paper is about the design and implementation of Python-based plant growth monitoring systems, data processing and analysis methods, and is expected to contribute to important research areas for improving plant production efficiency and reducing resource consumption.

A 3D Audio-Visual Animated Agent for Expressive Conversational Question Answering

  • Martin, J.C.;Jacquemin, C.;Pointal, L.;Katz, B.
    • 한국정보컨버전스학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.53-56
    • /
    • 2008
  • This paper reports on the ACQA(Animated agent for Conversational Question Answering) project conducted at LIMSI. The aim is to design an expressive animated conversational agent(ACA) for conducting research along two main lines: 1/ perceptual experiments(eg perception of expressivity and 3D movements in both audio and visual channels): 2/ design of human-computer interfaces requiring head models at different resolutions and the integration of the talking head in virtual scenes. The target application of this expressive ACA is a real-time question and answer speech based system developed at LIMSI(RITEL). The architecture of the system is based on distributed modules exchanging messages through a network protocol. The main components of the system are: RITEL a question and answer system searching raw text, which is able to produce a text(the answer) and attitudinal information; this attitudinal information is then processed for delivering expressive tags; the text is converted into phoneme, viseme, and prosodic descriptions. Audio speech is generated by the LIMSI selection-concatenation text-to-speech engine. Visual speech is using MPEG4 keypoint-based animation, and is rendered in real-time by Virtual Choreographer (VirChor), a GPU-based 3D engine. Finally, visual and audio speech is played in a 3D audio and visual scene. The project also puts a lot of effort for realistic visual and audio 3D rendering. A new model of phoneme-dependant human radiation patterns is included in the speech synthesis system, so that the ACA can move in the virtual scene with realistic 3D visual and audio rendering.

  • PDF

Implementation of Web-based Reporting System (웹 기반 리포팅 시스템 구현)

  • Kim, Young-Kyun
    • Journal of the Korea Computer Industry Society
    • /
    • v.7 no.5
    • /
    • pp.495-502
    • /
    • 2006
  • This paper describes how to implement reporting system for web-based information system. Reporting system is the S/W module that user is able to produce output of data in formal format. In Client/Server system, remote user can make formal output with client-side reporting component module. This client reporting component is usually system dependent. With web based information system, intranet, evolving, this client/server system need to he migrated to web-based reporting system. Reporting system component support multi-processing and real-time text/graphic output of server data. Ant Client can save or pint web page of client module. Especially, for real test its function and user interface, this reporting component is adopted in real network management system. The result shows that this reporting system component is very smart and excellent for real time web based monitoring system.

  • PDF

A Strong Authentication Scheme with User Privacy for Wireless Sensor Networks

  • Kumar, Pardeep;Gurtov, Andrei;Ylianttila, Mika;Lee, Sang-Gon;Lee, HoonJae
    • ETRI Journal
    • /
    • v.35 no.5
    • /
    • pp.889-899
    • /
    • 2013
  • Wireless sensor networks (WSNs) are used for many real-time applications. User authentication is an important security service for WSNs to ensure only legitimate users can access the sensor data within the network. In 2012, Yoo and others proposed a security-performance-balanced user authentication scheme for WSNs, which is an enhancement of existing schemes. In this paper, we show that Yoo and others' scheme has security flaws, and it is not efficient for real WSNs. In addition, this paper proposes a new strong authentication scheme with user privacy for WSNs. The proposed scheme not only achieves end-party mutual authentication (that is, between the user and the sensor node) but also establishes a dynamic session key. The proposed scheme preserves the security features of Yoo and others' scheme and other existing schemes and provides more practical security services. Additionally, the efficiency of the proposed scheme is more appropriate for real-world WSNs applications.

Development of Inventory Control System for Large-scale Retailers using Neural Network and (s*,S*) Policy (신경회로망과 (s*,S*) 정책을 이용한 대규모 유통업을 위한 재고 관리 시스템의 개발)

  • 김우주
    • The Journal of Information Systems
    • /
    • v.6 no.1
    • /
    • pp.223-256
    • /
    • 1997
  • Since the business scales of retailing companies become to be very large and the number of items dealt increases explosively, automation of inventory management becomes one of the most important issues to solve in retailing industry. In order to accomplish this automation of inventory management, there must be a great need to a method which can perform real-time decision making on inventory control in an automatic fashion, while communicating with inventory information systems like POS system and automatic warehousing system. But even in this circumstance, there are also many obstructions to such automation like varying demands, limited capacity of warehouse and exhibition room, need for strategic consideration on inventory control, etc., in a real sense. Due to these reasons, it seems very difficult that most large-scaled retailing companies get fully automated inventory management system. To overcome those difficulties and reflect them into inventory control, we propose a automated inventory control methodology for retailing industry based on neural network and policy model. Especially, policy model is devised to deal with dynamic varying demands and using this model, strategic goals on inventory can be considered into inventory control mechanism. Our proposed approach is implemented in workstation and its performance is also empirically verified also against to real case of one of the major retailing firm in Korea.

  • PDF