• Title/Summary/Keyword: real-time image surveillance system

Search Result 114, Processing Time 0.028 seconds

Target Tracking Using Image Features in a Cluttered Environment (클러터환경에서 영상특징을 이용한 표적 추적)

  • Jung, Young-Hun;Kwak, Dong-Min;Kim, Do-Jong;Ko, Jung-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.209-216
    • /
    • 2012
  • In this paper, we propose a novel tracking method which uses image features consisted of the area, average intensity, aspect ratio of a target image for the real-time IR surveillance system. The image features of the ground target can be modeled as a random process with exponential autocorrelation function mathematically. Finally, we derived a discrete target dynamic equation including kinematic states and geometric states of the target. Simulation results shows that the performance of the proposed method is better than that of the previous tracking method.

Development of Auto Traffic Light Control System for Prevention of Traffic Jam (교통 정체 예방을 위한 자동 신호등 제어시스템 개발)

  • Beck, Kwang-Moo;Shin, Ji-Hwan;Park, Mu-Hun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.4
    • /
    • pp.148-154
    • /
    • 2014
  • This paper suggests a new system based on image-processed information which is designed to control traffic light by measuring two-way traffic at the same time with a surveillance camera. With this system, the existing way of using one camera for one lane or loop coil will be improved to the more effective way of using only one camera to monitor a two-way, 8 lane roads statistically. Car images can be detected clearly even in irregular condition because of the background updating in real time. In addition, more accurate measurement is possible to users by selecting extra attention-needed regions. The automatic traffic light controlling algorithm, suggested in this paper, will prevent users and drivers from wasting their time and energy by controlling the number of traffic in advance.

FRS-OCC: Face Recognition System for Surveillance Based on Occlusion Invariant Technique

  • Abbas, Qaisar
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.288-296
    • /
    • 2021
  • Automated face recognition in a runtime environment is gaining more and more important in the fields of surveillance and urban security. This is a difficult task keeping in mind the constantly volatile image landscape with varying features and attributes. For a system to be beneficial in industrial settings, it is pertinent that its efficiency isn't compromised when running on roads, intersections, and busy streets. However, recognition in such uncontrolled circumstances is a major problem in real-life applications. In this paper, the main problem of face recognition in which full face is not visible (Occlusion). This is a common occurrence as any person can change his features by wearing a scarf, sunglass or by merely growing a mustache or beard. Such types of discrepancies in facial appearance are frequently stumbled upon in an uncontrolled circumstance and possibly will be a reason to the security systems which are based upon face recognition. These types of variations are very common in a real-life environment. It has been analyzed that it has been studied less in literature but now researchers have a major focus on this type of variation. Existing state-of-the-art techniques suffer from several limitations. Most significant amongst them are low level of usability and poor response time in case of any calamity. In this paper, an improved face recognition system is developed to solve the problem of occlusion known as FRS-OCC. To build the FRS-OCC system, the color and texture features are used and then an incremental learning algorithm (Learn++) to select more informative features. Afterward, the trained stack-based autoencoder (SAE) deep learning algorithm is used to recognize a human face. Overall, the FRS-OCC system is used to introduce such algorithms which enhance the response time to guarantee a benchmark quality of service in any situation. To test and evaluate the performance of the proposed FRS-OCC system, the AR face dataset is utilized. On average, the FRS-OCC system is outperformed and achieved SE of 98.82%, SP of 98.49%, AC of 98.76% and AUC of 0.9995 compared to other state-of-the-art methods. The obtained results indicate that the FRS-OCC system can be used in any surveillance application.

Adaptive Intra Fast Algorithm of H.264 for Video Surveillance (보안 영상 시스템에 적합한 H.264의 적응적 인트라 고속 알고리즘)

  • Jang, Ki-Young;Kim, Eung-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12C
    • /
    • pp.1055-1061
    • /
    • 2008
  • H.264 is the prominent video coding standard in various applications such as real-time streaming and digital multimedia broadcasting, since it provides enhanced compression performance, error resilience tools, and network adaptation. Compression efficiency of H.264 has been improved, however, it requires more computing and memory access than traditional methods. In this paper we proposed adaptive intra fast algorithm for real-time video surveillance system reducing the encoding complexity of H264/A VC. For this aim, temporal interrelationship between macroblock in the previous and the current frame is used to decide the encoding mode of macroblock fast. As a result, though video quality was deteriorated a little, less than 0.04dB, and bit rate was somewhat increased in suggested method, however, proposed method improved encoding time significantly and, in particular, encoding time of an image with little changes of neighboring background such as surveillance video was more shortened than traditional methods.

Efficient Swimmer Detection Algorithm using CNN-based SVM

  • Hong, Dasol;Kim, Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.12
    • /
    • pp.79-85
    • /
    • 2017
  • In this paper, we propose a CNN-based swimmer detection algorithm. Every year, water safety accidents have been occurred frequently, and accordingly, intelligent video surveillance systems are being developed to prevent accidents. Intelligent video surveillance system is a real-time system that detects objects which users want to do. It classifies or detects objects in real-time using algorithms such as GMM (Gaussian Mixture Model), HOG (Histogram of Oriented Gradients), and SVM (Support Vector Machine). However, HOG has a problem that it cannot accurately detect the swimmer in a complex and dynamic environment such as a beach. In other words, there are many false positives that detect swimmers as waves and false negatives that detect waves as swimmers. To solve this problem, in this paper, we propose a swimmer detection algorithm using CNN (Convolutional Neural Network), specialized for small object sizes, in order to detect dynamic objects and swimmers more accurately and efficiently in complex environment. The proposed CNN sets the size of the input image and the size of the filter used in the convolution operation according to the size of objects. In addition, the aspect ratio of the input is adjusted according to the ratio of detected objects. As a result, experimental results show that the proposed CNN-based swimmer detection method performs better than conventional techniques.

Video System for Real-time Criminal Activity Detection (실시간 범죄행위 감지를 위한 영상시스템)

  • Shin, Kwang-seong;Shin, Seong-yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.357-358
    • /
    • 2021
  • Although many people watch the scene with multiple surveillance cameras, it is difficult to ensure that immediate action can be taken in the event of a crime. Therefore, there is a need for a "crime behavior detection system" that can analyze images in real time from multiple surveillance cameras installed in elevators, call immediate crime alerts, and track crime scenes and times effectively. In this paper, a study was conducted to detect violent scenes occurring in elevators using Scene Change Detection. For effective detection, an x2-color histogram combining color histogram and histogram was applied.

  • PDF

Hardware Design of Super Resolution on Human Faces for Improving Face Recognition Performance of Intelligent Video Surveillance Systems (지능형 영상 보안 시스템의 얼굴 인식 성능 향상을 위한 얼굴 영역 초해상도 하드웨어 설계)

  • Kim, Cho-Rong;Jeong, Yong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.9
    • /
    • pp.22-30
    • /
    • 2011
  • Recently, the rising demand for intelligent video surveillance system leads to high-performance face recognition systems. The solution for low-resolution images acquired by a long-distance camera is required to overcome the distance limits of the existing face recognition systems. For that reason, this paper proposes a hardware design of an image resolution enhancement algorithm for real-time intelligent video surveillance systems. The algorithm is synthesizing a high-resolution face image from an input low-resolution image, with the help of a large collection of other high-resolution face images, called training set. When we checked the performance of the algorithm at 32bit RISC micro-processor, the entire operation took about 25 sec, which is inappropriate for real-time target applications. Based on the result, we implemented the hardware module and verified it using Xilinx Virtex-4 and ARM9-based embedded processor(S3C2440A). The designed hardware can complete the whole operation within 33 msec, so it can deal with 30 frames per second. We expect that the proposed hardware could be one of the solutions not only for real-time processing at the embedded environment, but also for an easy integration with existing face recognition system.

Real-Time Change Detection Architecture Based on SOM for Video Surveillance Systems (영상 감시시스템을 위한 SOM 기반 실시간 변화 감지 기법)

  • Kim, Jongwon;Cho, Jeongho
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.4
    • /
    • pp.109-117
    • /
    • 2019
  • In modern society, due to various accidents and crime threats committed to an unspecified number of people, individual security awareness is increasing throughout society and various surveillance techniques are being actively studied. Still, there is a decline in robustness due to many problems, requiring higher reliability monitoring techniques. Thus, this paper suggests a real-time change detection technique to complement the low robustness problem in various environments and dynamic/static change detection and to solve the cost efficiency problem. We used the Self-Organizing Map (SOM) applied as a data clustering technique to implement change detection, and we were able to confirm the superiority of noise robustness and abnormal detection judgment compared to the detection technique applied to the existing image surveillance system through simulation in the indoor office environment.

Development of Access Management System based on Face Recognition using ResNet (ResNet을 이용한 얼굴 인식 기반 출입관리시스템 개발)

  • Rhyou, Se-Yeol;Kim, Hye-Jin;Cha, Kyung-Ae
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.8
    • /
    • pp.823-831
    • /
    • 2019
  • In recent years, there has been developed systems such as a surveillance system and access control using a face recognition function instead of a password or an RFID chip, thereby reducing the risk of falsification. Moreover, deep learning technology has been applied to real-time face recognition technology in video, so it makes possible the development of access control system that improves the accuracy of recognition and efficiency of management. In this paper, we propose a real-time access management system based on face recognition using ResNet. The system is based on web server, which make it possible to manage the access by recognizing the person of the image through the camera and access information stored in the database. It can be accessed by a user application to receive various information. The implemented system identifies a person in real time and allows access control by accurately distinguishing whether they are members or not, and the test results can recognize in 0.2 seconds. The accuracy of recognition rate is up to about 97% depending on the experiment environment. With this system, access can be managed quickly and effectively, even many people rush to it.

Real-Time Face Tracking Algorithm Robust to illumination Variations (조명 변화에 강인한 실시간 얼굴 추적 알고리즘)

  • Lee, Yong-Beom;You, Bum-Jae;Lee, Seong-Whan;Kim, Kwang-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.3037-3040
    • /
    • 2000
  • Real-Time object tracking has emerged as an important component in several application areas including machine vision. surveillance. Human-Computer Interaction. image-based control. and so on. And there has been developed various algorithms for a long time. But in many cases. they have showed limited results under uncontrolled situation such as illumination changes or cluttered background. In this paper. we present a novel. computationally efficient algorithm for tracking human face robustly under illumination changes and cluttered backgrounds. Previous algorithms usually defines color model as a 2D membership function in a color space without consideration for illumination changes. Our new algorithm developed here. however. constructs a 3D color model by analysing plenty of images acquired under various illumination conditions. The algorithm described is applied to a mobile head-eye robot and experimented under various uncontrolled environments. It can track an human face more than 100 frames per second excluding image acquisition time.

  • PDF