• Title/Summary/Keyword: real-time image surveillance system

Search Result 114, Processing Time 0.032 seconds

Implementation of Real-Time Multi-Camera Video Surveillance System with Automatic Resolution Control Using Motion Detection (움직임 감지를 사용하여 영상 해상도를 자동 제어하는 실시간 다중 카메라 영상 감시 시스템의 구현)

  • Jung, Seulkee;Lee, Jong-Bae;Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.612-619
    • /
    • 2014
  • This paper proposes a real-time multi-camera video surveillance system with automatic resolution control using motion detection. In ordinary times, it acquires 4 channels of QVGA images, and it merges them into single VGA image and transmit it. When motion is detected, it automatically increases the resolution of motion-occurring channel to VGA and decreases those of 3 other channels to QQVGA, and then these images are overlaid and transmitted. Thus, it can magnifies and watches the motion-occurring channel while maintaining transmission bandwidth and monitoring all other channels. When it is synthesized with 0.18 um technology, the maximum operating frequency is 110 MHz, which can theoretically support 4 HD cameras.

Dividing Occluded Humans Based on an Artificial Neural Network for the Vision of a Surveillance Robot (감시용 로봇의 시각을 위한 인공 신경망 기반 겹친 사람의 구분)

  • Do, Yong-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.505-510
    • /
    • 2009
  • In recent years the space where a robot works has been expanding to the human space unlike traditional industrial robots that work only at fixed positions apart from humans. A human in the recent situation may be the owner of a robot or the target in a robotic application. This paper deals with the latter case; when a robot vision system is employed to monitor humans for a surveillance application, each person in a scene needs to be identified. Humans, however, often move together, and occlusions between them occur frequently. Although this problem has not been seriously tackled in relevant literature, it brings difficulty into later image analysis steps such as tracking and scene understanding. In this paper, a probabilistic neural network is employed to learn the patterns of the best dividing position along the top pixels of an image region of partly occlude people. As this method uses only shape information from an image, it is simple and can be implemented in real time.

Real-Time Moving Object Detection and Shadow Removal in Video Surveillance System (비디오 감시 시스템에서 실시간 움직이는 물체 검출 및 그림자 제거)

  • Lee, Young-Sook;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.574-578
    • /
    • 2009
  • Real-time object detection for distinguishing a moving object of interests from the background image in still image or video image sequence is an essential step to a correct object tracking and recognition. Moving cast shadow can be misclassified as part of objects or moving objects because the shadow region is included in the moving object region after object segmentation. For this reason, an algorithm for shadow removal plays an important role in the results of accurate moving object detection and tracking systems. To handle with the problems, an accurate algorithm based on the features of moving object and shadow in color space is presented in this paper. Experimental results show that the proposed algorithm is effective to detect a moving object and to remove shadow in test video sequences.

  • PDF

Fire detection in video surveillance and monitoring system using Hidden Markov Models (영상감시시스템에서 은닉마코프모델을 이용한 불검출 방법)

  • Zhu, Teng;Kim, Jeong-Hyun;Kang, Dong-Joong;Kim, Min-Sung;Lee, Ju-Seoup
    • Annual Conference of KIPS
    • /
    • 2009.04a
    • /
    • pp.35-38
    • /
    • 2009
  • The paper presents an effective method to detect fire in video surveillance and monitoring system. The main contribution of this work is that we successfully use the Hidden Markov Models in the process of detecting the fire with a few preprocessing steps. First, the moving pixels detected from image difference, the color values obtained from the fire flames, and their pixels clustering are applied to obtain the image regions labeled as fire candidates; secondly, utilizing massive training data, including fire videos and non-fire videos, creates the Hidden Markov Models of fire and non-fire, which are used to make the final decision that whether the frame of the real-time video has fire or not in both temporal and spatial analysis. Experimental results demonstrate that it is not only robust but also has a very low false alarm rate, furthermore, on the ground that the HMM training which takes up the most time of our whole procedure is off-line calculated, the real-time detection and alarm can be well implemented when compared with the other existing methods.

Target image detection and servo motor control for automatic surveillance tracking (자동 감시 추적을 위한 표적영상 검출 및 서보모터 제어)

  • Shin, Heung Yeoul
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.6 no.2
    • /
    • pp.119-127
    • /
    • 2010
  • In this paper, we propose a new automatic surveillance tracking system that can extract the target from the complex background and foreground noises by using the image-based SAD algorithm and control the servo motor of cameras by using kanatani algorithm. From the experimental results the proposed stereo tracking system is found to track the target adaptively under the circumstance of complex and changing background noises and the possibility of real-time implementation of the proposed system by using the optical system is also suggested.

DSP Embedded Early Fire Detection Method Using IR Thermal Video

  • Kim, Won-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.10
    • /
    • pp.3475-3489
    • /
    • 2014
  • Here we present a simple flame detection method for an infrared (IR) thermal camera based real-time fire surveillance digital signal processor (DSP) system. Infrared thermal cameras are especially advantageous for unattended fire surveillance. All-weather monitoring is possible, regardless of illumination and climate conditions, and the data quantity to be processed is one-third that of color videos. Conventional IR camera-based fire detection methods used mainly pixel-based temporal correlation functions. In the temporal correlation function-based methods, temporal changes in pixel intensity generated by the irregular motion and spreading of the flame pixels are measured using correlation functions. The correlation values of non-flame regions are uniform, but the flame regions have irregular temporal correlation values. To satisfy the requirement of early detection, all fire detection techniques should be practically applied within a very short period of time. The conventional pixel-based correlation function is computationally intensive. In this paper, we propose an IR camera-based simple flame detection algorithm optimized with a compact embedded DSP system to achieve early detection. To reduce the computational load, block-based calculations are used to select the candidate flame region and measure the temporal motion of flames. These functions are used together to obtain the early flame detection algorithm. The proposed simple algorithm was tested to verify the required function and performance in real-time using IR test videos and a real-time DSP system. The findings indicated that the system detected the flames within 5 to 20 seconds, and had a correct flame detection ratio of 100% with an acceptable false detection ratio in video sequence level.

A Real-time Audio Surveillance System Detecting and Localizing Dangerous Sounds for PTZ Camera Surveillance (PTZ 카메라 감시를 위한 실시간 위험 소리 검출 및 음원 방향 추정 소리 감시 시스템)

  • Nguyen, Viet Quoc;Kang, HoSeok;Chung, Sun-Tae;Cho, Seongwon
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.11
    • /
    • pp.1272-1280
    • /
    • 2013
  • In this paper, we propose an audio surveillance system which can detect and localize dangerous sounds in real-time. The location information about dangerous sounds can render a PTZ camera to be directed so as to catch a snapshot image about the dangerous sound source area and send it to clients instantly. The proposed audio surveillance system firstly detects foreground sounds based on adaptive Gaussian mixture background sound model, and classifies it into one of pre-trained classes of foreground dangerous sounds. For detected dangerous sounds, a sound source localization algorithm based on Dual delay-line algorithm is applied to localize the sound sources. Finally, the proposed system renders a PTZ camera to be oriented towards the dangerous sound source region, and take a snapshot against over the sound source region. Experiment results show that the proposed system can detect foreground dangerous sounds stably and classifies the detected foreground dangerous sounds into correct classes with a precision of 79% while the sound source localization can estimate orientation of the sound source with acceptably small error.

Smart Target Detection System Using Artificial Intelligence (인공지능을 이용한 스마트 표적탐지 시스템)

  • Lee, Sung-nam
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.538-540
    • /
    • 2021
  • In this paper, we proposed a smart target detection system that detects and recognizes a designated target to provide relative motion information when performing a target detection mission of a drone. The proposed system focused on developing an algorithm that can secure adequate accuracy (i.e. mAP, IoU) and high real-time at the same time. The proposed system showed an accuracy of close to 1.0 after 100k learning of the Google Inception V2 deep learning model, and the inference speed was about 60-80[Hz] when using a high-performance laptop based on the real-time performance Nvidia GTX 2070 Max-Q. The proposed smart target detection system will be operated like a drone and will be helpful in successfully performing surveillance and reconnaissance missions by automatically recognizing the target using computer image processing and following the target.

  • PDF

Real Time Object Tracking Method using Multiple Cameras (다중 카메라를 이용한 실시간 객체 추적 방법)

  • Jang, In-Tae;Kim, Dong-Woo;Song, Young-Jun;Kwon, Hyeok-Bong;Ahn, Jae-Hyeong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.4
    • /
    • pp.51-59
    • /
    • 2012
  • Recently, the study about object tracking using image processing has been active in the field of security and surveillance. Existing security and surveillance systems using multiple cameras have been operating independently. Thus, the chase was difficult when the tracking object move to other monitored areas. In this paper, we propose the way to change the control of camera automatically following the moving direction of objects in multiple cameras. The proposed method detects the object and tracks the object using color information and direction information of object. The color information obtains using the hue and the direction information obtains using the optical flow. At this time, the optical flow is detected for the entire image area of an object that is not applied only to reduce the computational complexity makes it possible to track in real time. In addition, it can be solved to inconvenience of security surveillance system to use existing camera by tracking an object automatically.

Segmentation of a moving object using binary phase extraction joint transform correlator technology (BPEJTC 기술을 이용한 이동 표적 영역화)

  • 원종권;차진우;이상이;류충상;김은수
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.7
    • /
    • pp.88-96
    • /
    • 1997
  • As the need of automatized system has been increased recently together with the development of industrial and military technologies, the adaptive real-time target detection technologies that can be embedded on vehicles, planes, ships, robots and so on, are hgihly demanded. Accordingly, this paper proposes a novel approach to detect and segment the moving targets using the binary phase extraction joint transform correlator (BPEJTC), the advanced image subtraction filter and convex hull processing. The BPEJTC which was used as a target detection unit mainly for target tracking compensating the camera movement. The target region has been detected by processing the successful three frames using the advanced image subtraction filter, and has become more accurate by applying the developed convex hull filter. As shown by some experimental results, it is expected that the proposed approaches for compensation of the camera movement and segmentationof of target region, can be used for th emissile guiddance, aero surveillance, automatic inspectin system as well as the target detection unit of automatic target recognition system that request adaptive real-time processing.

  • PDF