• Title/Summary/Keyword: real-time image surveillance system

Search Result 114, Processing Time 0.024 seconds

Queue Detection using Fuzzy-Based Neural Network Model (퍼지기반 신경망모형을 이용한 대기행렬 검지)

  • KIM, Daehyon
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.2
    • /
    • pp.63-70
    • /
    • 2003
  • Real-time information on vehicle queue at intersections is essential for optimal traffic signal control, which is substantial part of Intelligent Transport Systems (ITS). Computer vision is also potentially an important element in the foundation of integrated traffic surveillance and control systems. The objective of this research is to propose a method for detecting an exact queue lengths at signalized intersections using image processing techniques and a neural network model Fuzzy ARTMAP, which is a supervised and self-organizing system and claimed to be more powerful than many expert systems, genetic algorithms. and other neural network models like Backpropagation, is used for recognizing different patterns that come from complicated real scenes of a car park. The experiments have been done with the traffic scene images at intersections and the results show that the method proposed in the paper could be efficient for the noise, shadow, partial occlusion and perspective problems which are inevitable in the real world images.

Vehicle License Plate Recognition System By Edge-based Segment Image Generation (에지기반 세그먼트 영상 생성에 의한 차량 번호판 인식 시스템)

  • Kim, Jin-Ho;Noh, Duck-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.3
    • /
    • pp.9-16
    • /
    • 2012
  • The research of vehicle license plate recognition has been widely studied for the smart city project. The license plate recognition can be hard due to the geometric distortion and the image quality degradation in case of capturing the driving car image at CCTV without trigger signal on the road. In this paper, the high performance vehicle license plate recognition system using edge-based segment image is introduced which is robust in the geometric distortion and the image quality degradation according to non-trigger signal. The experimental results of the proposed real time license plate recognition algorithm which is implemented at the CCTV on the road show that the plate detection rate was 97.5% and the overall character recognition rate of the detected plates was 99.3% in a day average 1,535 vehicles for a week operation.

Real Time Moving Object Detection Based on Frame Difference and Doppler Effects in HSV color model (HSV 컬러 모델에서의 도플러 효과와 영상 차분 기반의 실시간 움직임 물체 검출)

  • Sanjeewa, Nuwan;Kim, Won-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.4
    • /
    • pp.77-81
    • /
    • 2014
  • This paper propose a method to detect moving object and locating in real time from video sequence. first the proposed method extract moving object by differencing two consecutive frames from the video sequence. If the interval between captured two frames is long, it cause to generate fake moving object as tail of the real moving object. secondly this paper proposed method to overcome this problem by using doppler effects and HSV color model. finally the object segmentation and locating is done by combining the result that obtained from steps above. The proposed method has 99.2% of detection rate in practical and also this method is comparatively speed than other similar methods those proposed in past. Since the complexity of the algorithm is directly affects to the speed of the system, the proposed method can be used as low complexity algorithm for real time moving object detection.

Real-Time Landmark Detection using Fast Fourier Transform in Surveillance (서베일런스에서 고속 푸리에 변환을 이용한 실시간 특징점 검출)

  • Kang, Sung-Kwan;Park, Yang-Jae;Chung, Kyung-Yong;Rim, Kee-Wook;Lee, Jung-Hyun
    • Journal of Digital Convergence
    • /
    • v.10 no.7
    • /
    • pp.123-128
    • /
    • 2012
  • In this paper, we propose a landmark-detection system of object for more accurate object recognition. The landmark-detection system of object becomes divided into a learning stage and a detection stage. A learning stage is created an interest-region model to set up a search region of each landmark as pre-information necessary for a detection stage and is created a detector by each landmark to detect a landmark in a search region. A detection stage sets up a search region of each landmark in an input image with an interest-region model created in the learning stage. The proposed system uses Fast Fourier Transform to detect landmark, because the landmark-detection is fast. In addition, the system fails to track objects less likely. After we developed the proposed method was applied to environment video. As a result, the system that you want to track objects moving at an irregular rate, even if it was found that stable tracking. The experimental results show that the proposed approach can achieve superior performance using various data sets to previously methods.

Multiple Objection and Tracking based on Morphological Region Merging from Real-time Video Sequences (실시간 비디오 시퀀스로부터 형태학적 영역 병합에 기반 한 다중 객체 검출 및 추적)

  • Park Jong-Hyun;Baek Seung-Cheol;Toan Nguyen Dinh;Lee Guee-Sang
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.2
    • /
    • pp.40-50
    • /
    • 2007
  • In this paper, we propose an efficient method for detecting and tracking multiple moving objects based on morphological region merging from real-time video sequences. The proposed approach consists of adaptive threshold extraction, morphological region merging and detecting and tracking of objects. Firstly, input frame is separated into moving regions and static regions using the difference of images between two consecutive frames. Secondly, objects are segmented with a reference background image and adaptive threshold values, then, the segmentation result is refined by morphological region merge algorithm. Lastly, each object segmented in a previous step is assigned a consistent identification over time, based on its spatio-temporal information. The experimental results show that a proposed method is efficient and useful in terms of real-time multiple objects detecting and tracking.

Online Monitoring System based notifications on Mobile devices with Kinect V2 (키넥트와 모바일 장치 알림 기반 온라인 모니터링 시스템)

  • Niyonsaba, Eric;Jang, Jong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.6
    • /
    • pp.1183-1188
    • /
    • 2016
  • Kinect sensor version 2 is a kind of camera released by Microsoft as a computer vision and a natural user interface for game consoles like Xbox one. It allows acquiring color images, depth images, audio input and skeletal data with a high frame rate. In this paper, using depth image, we present a surveillance system of a certain area within Kinect's field of view. With computer vision library(Emgu CV), if an object is detected in the target area, it is tracked and kinect camera takes RGB image to send it in database server. Therefore, a mobile application on android platform was developed in order to notify the user that Kinect has sensed strange motion in the target region and display the RGB image of the scene. User gets the notification in real-time to react in the best way in the case of valuable things in monitored area or other cases related to a reserved zone.

Loitering Behavior Detection Using Shadow Removal and Chromaticity Histogram Matching (그림자 제거와 색도 히스토그램 비교를 이용한 배회행위 검출)

  • Park, Eun-Soo;Lee, Hyung-Ho;Yun, Myoung-Kyu;Kim, Min-Gyu;Kwak, Jong-Hoon;Kim, Hak-Il
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.6
    • /
    • pp.171-181
    • /
    • 2011
  • Proposed in this paper is the intelligent video surveillance system to effectively detect multiple loitering objects even that disappear from the out of camera's field of view and later return to a target zone. After the background and foreground are segmented using Gaussian mixture model and shadows are removed, the objects returning to the target zone is recognized using the chromaticity histogram and the duration of loitering is preserved. For more accurate measurement of the loitering behavior, the camera calibration is also applied to map the image plane to the real-world ground. Hence, the loitering behavior can be detected by considering the time duration of the object's existence in the real-world space. The experiment was performed using loitering video and all of the loitering behaviors are accurately detected.

Real time Monitoring System using Web Camera (웹 카메라를 통한 실시간 모니터링 시스템)

  • Ryu, Kwang-Hee;Choi, Jong-Kun;Im, Young-Tae;Park, Yeon-Sik;Jung, Hoe-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.667-670
    • /
    • 2005
  • As security and surveillance have become the center of interest, remote controlled CCTV(Closed-Circuit Television) market has been formed while rapid development of digital image compression technology and Internet triggered the advent of web cameras. The characteristic of web camera is that it can provide users with higher quality image than CCTV at any place where Internet access is available. However, As for the system administrator, the existing web camera have disadvantage in that they allows users only. who are connected to the server of the web camera, to see the image from it. In this paper, in order to make up for this defect, designed multi-vision interface showing multi images on single screen and, for the purpose of the improvement in efficiency, the functions of saving images and of scheduling the time to save the images.

  • PDF

Analysis of Human Activity Using Motion Vector (움직임 벡터를 이용한 사람 활동성 분석)

  • Kim, Sun-Woo;Choi, Yeon-Sung;Yang, Hae-Kwon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.157-160
    • /
    • 2011
  • In this paper, We proposed the method of recognition and analysis of human activites using Motion vector in real-time surveillance system. We employs subtraction image techniques to detect blob(human) in the foreground. When MPEG-4 video recording EPZS(Enhanced Predicted Zonal Search) is detected the values of motion vectors were used. In this paper, the activities of human recognize and classified such as meta-classes like this {Active, Inactive}, {Moving, Non-moving}, {Walking, Running}. Each step was separated using a step-by-step threshold values. We created approximately 150 conditions for the simulation. As a result, We showed a high success rate about 86~98% to distinguish each steps in simulation image.

  • PDF

Real-Time Loitering Detection using Object Feature (객체 특징을 이용한 실시간 배회행위 검출)

  • Kim, Jin Su;Pan, Sung Bum
    • Smart Media Journal
    • /
    • v.5 no.3
    • /
    • pp.93-98
    • /
    • 2016
  • The literal meaning of loitering is "to lingering aimlessly or as if aimless in or about a place". And most criminals show this kind of act before they actually commit crime. Therefore, detecting this kind of loitering can effectively prevent a variety of crime. In this paper, we propose a loitering-detection algorithm using the Raspberry Pi. Proposed algorithm uses an adaptive difference image to detect moving objects and morphology opening operation to enhance the accuracy of detection. The loitering- behavior is being detected by using the center of gravity of the object to see the changes of angle; and pixel movement distance to determine the height of the object. When the loitering-behavior is detected, it outputs the alarm to tell the users by using the Raspberry Pi.