• Title/Summary/Keyword: real-time hybrid simulation

Search Result 128, Processing Time 0.03 seconds

Establishing a stability switch criterion for effective implementation of real-time hybrid simulation

  • Maghareh, Amin;Dyke, Shirley J.;Prakash, Arun;Rhoads, Jeffrey F.
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1221-1245
    • /
    • 2014
  • Real-time hybrid simulation (RTHS) is a promising cyber-physical technique used in the experimental evaluation of civil infrastructure systems subject to dynamic loading. In RTHS, the response of a structural system is simulated by partitioning it into physical and numerical substructures, and coupling at the interface is achieved by enforcing equilibrium and compatibility in real-time. The choice of partitioning parameters will influence the overall success of the experiment. In addition, due to the dynamics of the transfer system, communication and computation delays, the feedback force signals are dependent on the system state subject to delay. Thus, the transfer system dynamics must be accommodated by appropriate actuator controllers. In light of this, guidelines should be established to facilitate successful RTHS and clearly specify: (i) the minimum requirements of the transfer system control, (ii) the minimum required sampling frequency, and (iii) the most effective ways to stabilize an unstable simulation due to the limitations of the available transfer system. The objective of this paper is to establish a stability switch criterion due to systematic experimental errors. The RTHS stability switch criterion will provide a basis for the partitioning and design of successful RTHS.

Verification of a hybrid control approach for spacecraft attitude stabilization through hardware-in-the-loop simulation

  • Kim, Sung-Woo;Park, Sang-Young
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.32.2-32.2
    • /
    • 2011
  • State dependent Riccati equation (SDRE) control technique has been widely used in the control society. Although it solves nonlinear optimal control problems, which minimizes state error and control efforts simultaneously, it has drawbacks when it is to be applied to the real time systems in that it requires much computational efforts. So the real time system whose computational ability is limited (for example, satellites) cannot afford to use SDRE controller. To solve this problem, a hybrid controller which is based on MSDRE (Modified SDRE) and ANFIS (Adaptive Neuro-Fuzzy Inference System) has been proposed by Abdelrahman et al. (2010). We propose a hybrid controller based on SDRE and ANFIS, and apply the hybrid controller to the hardware attitude simulator to perform a HIL (Hardware-In-the-Loop) simulation. Through HIL simulation, it is demonstrated that the hybrid controller satisfies the control requirement and the computation load is reduced significantly. In addition, the effects of statistical properties of the ANFIS training data to the performance of the ANFIS controller have been analyzed.

  • PDF

Development and Performance Verification of Real-time Hybrid Navigation System for Autonomous Underwater Vehicles

  • Kim, Hyun Ki;Jung, Woo Chae;Kim, Jeong Won;Nam, Chang Woo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.2
    • /
    • pp.97-107
    • /
    • 2016
  • Military Autonomous Underwater Vehicle (AUV) is utilized to search a mine under the sea. This paper presents design and performance verification of real-time hybrid navigation system for AUV. The navigation system uses Doppler Velocity Log (DVL) integration method to correct INS error in underwater. When the AUV is floated on the water, the accumulated error of navigation algorithm is corrected using position/velocity of GPS. The navigation algorithm is verified using 6 Degree Of Freedom (DOF) simulation, Program In the Loop Simulation (PILS). Finally, the experiments are performed in real sea environment to prove the reliability of real-time hybrid navigation algorithm.

Logic circuit design for high-speed computing of dynamic response in real-time hybrid simulation using FPGA-based system

  • Igarashi, Akira
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1131-1150
    • /
    • 2014
  • One of the issues in extending the range of applicable problems of real-time hybrid simulation is the computation speed of the simulator when large-scale computational models with a large number of DOF are used. In this study, functionality of real-time dynamic simulation of MDOF systems is achieved by creating a logic circuit that performs the step-by-step numerical time integration of the equations of motion of the system. The designed logic circuit can be implemented to an FPGA-based system; FPGA (Field Programmable Gate Array) allows large-scale parallel computing by implementing a number of arithmetic operators within the device. The operator splitting method is used as the numerical time integration scheme. The logic circuit consists of blocks of circuits that perform numerical arithmetic operations that appear in the integration scheme, including addition and multiplication of floating-point numbers, registers to store the intermediate data, and data busses connecting these elements to transmit various information including the floating-point numerical data among them. Case study on several types of linear and nonlinear MDOF system models shows that use of resource sharing in logic synthesis is crucial for effective application of FPGA to real-time dynamic simulation of structural response with time step interval of 1 ms.

A model-based adaptive control method for real-time hybrid simulation

  • Xizhan Ning;Wei Huang;Guoshan Xu;Zhen Wang;Lichang Zheng
    • Smart Structures and Systems
    • /
    • v.31 no.5
    • /
    • pp.437-454
    • /
    • 2023
  • Real-time hybrid simulation (RTHS), which has the advantages of a substructure pseudo-dynamic test, is widely used to investigate the rate-dependent mechanical response of structures under earthquake excitation. However, time delay in RTHS can cause inaccurate results and experimental instabilities. Thus, this study proposes a model-based adaptive control strategy using a Kalman filter (KF) to minimize the time delay and improve RTHS stability and accuracy. In this method, the adaptive control strategy consists of three parts-a feedforward controller based on the discrete inverse model of a servohydraulic actuator and physical specimen, a parameter estimator using the KF, and a feedback controller. The KF with the feedforward controller can significantly reduce the variable time delay due to its fast convergence and high sensitivity to the error between the desired displacement and the measured one. The feedback control can remedy the residual time delay and minimize the method's dependence on the inverse model, thereby improving the robustness of the proposed control method. The tracking performance and parametric studies are conducted using the benchmark problem in RTHS. The results reveal that better tracking performance can be obtained, and the KF's initial settings have limited influence on the proposed strategy. Virtual RTHSs are conducted with linear and nonlinear physical substructures, respectively, and the results indicate brilliant tracking performance and superb robustness of the proposed method.

Computer Simulation: A Hybrid Model for Traffic Signal Optimisation

  • Jbira, Mohamed Kamal;Ahmed, Munir
    • Journal of Information Processing Systems
    • /
    • v.7 no.1
    • /
    • pp.1-16
    • /
    • 2011
  • With the increasing number of vehicles in use in our daily life and the rise of traffic congestion problems, many methods and models have been developed for real time optimisation of traffic lights. Nevertheless, most methods which consider real time physical queue sizes of vehicles waiting for green lights overestimate the optimal cycle length for such real traffic control. This paper deals with the development of a generic hybrid model describing both physical traffic flows and control of signalised intersections. The firing times assigned to the transitions of the control part are considered dynamic and are calculated by a simplified optimisation method. This method is based on splitting green times proportionally to the predicted queue sizes through input links for each new cycle time. The proposed model can be easily translated into a control code for implementation in a real time control system.

Real-Time Hybrid Testing Using a Fixed Iteration Implicit HHT Time Integration Method for a Reinforced Concrete Frame (고정반복법에 의한 암시적 HHT 시간적분법을 이용한 철근콘크리트 골조구조물의 실시간 하이브리드실험)

  • Kang, Dae-Hung;Kim, Sung-Il
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.11-24
    • /
    • 2011
  • A real-time hybrid test of a 3 story-3 bay reinforced concrete frame which is divided into numerical and physical substructure models under uniaxial earthquake excitation was run using a fixed iteration implicit HHT time integration method. The first story inner non-ductile column was selected as the physical substructure model, and uniaxial earthquake excitation was applied to the numerical model until the specimen failed due to severe damage. A finite-element analysis program, Mercury, was newly developed and optimized for a real-time hybrid test. The drift ratio based on the top horizontal displacement of the physical substructure model was compared with the result of a numerical simulation by OpenSees and the result of a shaking table test. The experiment in this paper is one of the most complex real-time hybrid tests, and the description of the hardware, algorithm and models is presented in detail. If there is an improvement in the numerical model, the evaluation of the tangent stiffness matrix of the physical substructure model in the finite element analysis program and better software to reduce the computational time of the element state determination for the force-based beam-column element, then the comparison with the results of the real-time hybrid test and the shaking table test deserves to make a recommendation. In addition, for the goal of a "Numerical simulation of the complex structures under dynamic loading", the real time hybrid test has enough merit as an alternative to dynamic experiments of large and complex structures.

Power System Stability Analysis Using a Hybrid Approach (하이브리드 방법을 이용한 전력계통 안정도 해석)

  • Seo, Gyu-Seok;Park, Ji-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.10
    • /
    • pp.21-25
    • /
    • 2010
  • This paper explains hybrid method that combines Time domain simulation technique with the direct method of Transient stability analysis. First, it calculate trajectory of real system by Time domain Simulation using OOP(Object Oriented Programming method) and evaluate Transient Energy Function to induce stability index to calculate Transient stability margin. Once the status of system(stable or unstable) has been identified, proper criteria are proposed to stop time-domain simulation to reduce CPU time.

Robust stability analysis of real-time hybrid simulation considering system uncertainty and delay compensation

  • Chen, Pei-Ching;Chen, Po-Chang
    • Smart Structures and Systems
    • /
    • v.25 no.6
    • /
    • pp.719-732
    • /
    • 2020
  • Real-time hybrid simulation (RTHS) which combines physical experiment with numerical simulation is an advanced method to investigate dynamic responses of structures subjected to earthquake excitation. The desired displacement computed from the numerical substructure is applied to the experimental substructure by a servo-hydraulic actuator in real time. However, the magnitude decay and phase delay resulted from the dynamics of the servo-hydraulic system affect the accuracy and stability of a RTHS. In this study, a robust stability analysis procedure for a general single-degree-of-freedom structure is proposed which considers the uncertainty of servo-hydraulic system dynamics. For discussion purposes, the experimental substructure is a portion of the entire structure in terms of a ratio of stiffness, mass, and damping, respectively. The dynamics of the servo-hydraulic system is represented by a multiplicative uncertainty model which is based on a nominal system and a weight function. The nominal system can be obtained by conducting system identification prior to the RTHS. A first-order weight function formulation is proposed which needs to cover the worst possible uncertainty envelope over the frequency range of interest. Then, the Nyquist plot of the perturbed system is adopted to determine the robust stability margin of the RTHS. In addition, three common delay compensation methods are applied to the RTHS loop to investigate the effect of delay compensation on the robust stability. Numerical simulation and experimental validation results indicate that the proposed procedure is able to obtain a robust stability margin in terms of mass, damping, and stiffness ratio which provides a simple and conservative approach to assess the stability of a RTHS before it is conducted.

A Real time Simulation for Performance Analysis of Flight Control System (비행체 제어장치의 성능 해석을 위한 실시간 시뮬레이션)

  • 곽병철;박양배
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.10
    • /
    • pp.458-464
    • /
    • 1986
  • This paper introduces a method for design verification and performance evaluation of flight control system. The method is a real time hardware in the loop simulation using the hybrid computer and motion table facility. As a typical illustration, a roll control system of flight vehicle is applied. The simulation validity is demonstrated by comparing hardware test results with analog simulation results.

  • PDF