• Title/Summary/Keyword: real-time PCR

Search Result 2,007, Processing Time 0.032 seconds

Comparative Expression of Stress Related Genes in Response to Salt-stressed Aspen by Real-time RT-PCR

  • Ku, Ja-Jung;Kim, Yong-Yul
    • Korean Journal of Plant Resources
    • /
    • v.21 no.3
    • /
    • pp.210-215
    • /
    • 2008
  • Gene-expression analysis is increasingly important in biological research, with real-time reverse PCR (RTPCR) becoming the method of choice for high-throughput and accurate expression profiling of selected genes. However, this technique requires important preliminary work for standardizing and optimizing the many parameters involved in the analysis. Plant stress studies are more and more based on gene expression. The analysis of gene expression requires sensitive and reproducible measurements for specific mRNA sequence. Several genes are regulated in response to abitoic stresses, such as salinity, and their gene products function in stress response and tolerance. The design of the primers and TaqMan probes for real-time PCR assays were carried out using the Primer $Express^{TM}$ software 3.0. The PCR efficiency was estimated through the linear regression of the dilution curve. To understand the expression pattern of various genes under salt stressed condition, we have developed a unique public resource of 9 stress-related genes in poplar. In this study, real-time RT-PCR was used to quantify the transcript level of 10 genes (9 stress-related genes and 1 house keeping gene) that could play a role in adaptation of Populus davidiana. Real-time RT-PCR analyses exhibited different expression ratios of related genes. The data obtained showed that determination of mRNA levels could constitute a new approach to study the stress response of P. davidiana after adaptation during growth in salinity condition.

Identification of Hanwoo (Korean Native Cattle) Beef in Restaurants using Real-time PCR (시중 음식점에서 판매되는 쇠고기의 유전자 분석을 이용한 한우육 감별)

  • Kim Jin-Man;Nam Yong-Suk;Choi Ji-Hun;Lee Mi-Ae;Jeong Jong-Yon;Kim Cheon-Jei
    • Food Science of Animal Resources
    • /
    • v.25 no.2
    • /
    • pp.203-209
    • /
    • 2005
  • Real time-polymerase chain reaction (RT-PCR) is currently considered as the most sensitive method to detect low abundant DNAs in samples. Compared to conventional PCR, real-time PCR has a high reliability because of excluding false-positive results and can allow a simultaneous faster detection and quantification of target DNAs. This study was carried out to identify the Hanwoo (Korean native cattle) beef by genotyping after DNA extraction of commercial beef in 41 restaurants. Since Hanwoo, Holstein and imported cattle meat have different patterns in the MC1R gene associated with the coat colors of cattles (C-type, C/T-type or T-type), we could identify the genotype using real-time PCR The result of real-time PCR assay for beef samples in 41 restaurants which are asserted to sell Hanwoo beef only, showed that 29 of 41 samples were Hanwoo beef gene type (T-type) and 12 of 41 samples were Holstein or imported cattle gene type (C-type or C/T-type). Therefore, the proportion of Han-woo beef was $70.7\%$ and the proportion of Holstein or imported cattle meat was $29.3\%(C/T-type; 12.2\%,\;C-type; 17.1\%)$.

Characterization of Differentiation of the Supernumerary Dental Pulp Stem Cells toward the Odontoblast by Application Period of Additives (과잉치 치수유래 줄기세포의 분화제 처리 기간에 따른 상아모세포 발현 특성)

  • Kim, Jongsoo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.42 no.4
    • /
    • pp.312-318
    • /
    • 2015
  • The aim of this study was to investigate the possibility of the supernumerary teeth for the stem cell source in dentistry. The Real Time Quantitative Reverse Transcription Polymerase Chain Reaction (Real Time qRT-PCR) method was used to evaluate the differentiation toward the odontoblast of the supernumerary dental pulp stem cells (sDPSCs). Supernumerary dental pulp stem cells were obtained from 3 children (2 males and 1 female, age 7 to 9) diagnosed that the eruption of permanent teeth was disturbed by supernumerary teeth. The common genes for odontoblasts are alkaline phosphatase (ALP), osteocalcin (OC), osteonectin (ON), dentin matrix acidic phosphoprotein 1 (DMP-1), dentin sialophosphoprotein (DSPP). The sDPSCs were treated for 0 days, 8 days and 14 days with additives and then Real Time qRT-PCR was performed in intervals of 0 days, 8 days and 14 days. The alizarin-red solution staining was performed to visualize the stained color for the degree of calcification at 7 days, 14 days, 21 days and 28 days after treating additives to the sDPSCs. From the result of the Real Time qRT-PCR, the manifestation exhibit maximum value at 8 days after additive treatment and shifted to a decrease trend at 14 days. Alizarin-red solution staining exhibit light results at 7 days after staining and generalized dark result at 14 days. Consequently, in studies with sDPSCs, appropriate treatment time of additives for Real Time qRT-PCR is 8 days. Also, a suitable period of Alizarin-red solution staining is 14 days.

Development of TaqMan Probe-Based Real-Time PCR Method for erm(A), erm(B), and erm(C), Rapid Detection of Macrolide-Lincosamide-Streptogramin B Resistance Genes, from Clinical Isolates

  • Jung, Jae-Hyuk;Yoon, Eun-Jeong;Choi, Eung-Chil;Choi, Sung-Sook
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1464-1469
    • /
    • 2009
  • To achieve more accurate and rapid detection of macrolide-lincosamide-streptogramin B resistance genes, erm(A), erm(B), and erm(C), we developed a TaqMan probe-based real-time PCR (Q-PCR) method and compared it with conventional PCR (C-PCR), which is the most widely using erm gene identification method. The detection limit of Q-PCR was 5 fg of genomic DNA or 5-8 CFU of bacterial cells of Staphylococcus aureus. The utilization of Q-PCR might shorten the time to erm detection from 3-4 h to about 50 min. These data indicated that Q-PCR assay appears to be not only highly sensitive and specific, but also the most rapid diagnostic method. Therefore, the appropriate application of the Q-PCR assay will permit rapid and accurate identification of erm genes from clinical and other samples.

Detection of blaKPC and blaNDM Genes from Gram-Negative Rod Bacteria Isolated from a General Hospital in Gyeongnam (경남지역 종합병원에서 분리된 그람음성막대균으로부터 blaKPC 및 blaNDM 유전자 검출)

  • Yang, Byoung Seon;Park, Ji Ae
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.53 no.1
    • /
    • pp.49-59
    • /
    • 2021
  • This study investigated the use of real-time PCR melting curves for the diagnosis of blaKPC and blaNDM genes among the most frequently detected carbapenemase-producing Enterobacteriaceae in Korea. As a means of addressing the shortcomings of phenotype tests and conventional PCR. The modified Hodge test confirmed positivity in 25 of 35 strains, and carbapenemase inhibition testing confirmed positivity in 14 strains by meropenem+PBA or meropenem+EDTA. PCR analysis showed amplification products in 25 strains of Klebsiella pneumoniae carbapenemases (KPC), 10 of K. pneumoniae, 5 of E. coli, 5 of A. baumannii, 4 of P. aeruginosa, and 1 of P. putida. New Delhi metallo β-lactamase (NDM) identified amplification products in 8 strains, that is, 2 K. pneumoniae, 3 E. coli, 1 P. aeruginosa, 1 E. cloacae, and 1 P. retgeri strains. Real-time PCR melting curve analysis confirmed amplification in 25 strains of KPC and 8 strains of NDM, and these results were 100% consistent with PCR results. In conclusion, our findings suggest early diagnosis of carbapenem resistant Enterobacteriaceae by real-time PCR offers a potential means of antibacterial management that can prevent and control nosocomial infection spread.

Quantitative Detection of Salmonella typhimurium Contamination in Milk, Using Real-Time PCR

  • JUNG SUNG JE;KIM HYUN-JOONG;KIM HAE-YEONG
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1353-1358
    • /
    • 2005
  • A rapid and quantitative real-time PCR was developed to target the invasion A (invA) gene of Salmonella spp. We developed quantitative standard curves based on plasmids containing the invA gene. Based on these curves, we detected Salmonella spp. in artificially contaminated buffered peptone water (BPW) and milk samples. We were able to determine the invA gene copy number per ml of food samples, with the minimum detection limit of $4.1{\times}10^{3}$ copies/ml of BPW and $3.3{\times}10^{3}$ copies/ml of milk. When applied directly to detect and quantify Salmonella spp. in BPW and milk, the present real-time PCR assay was as sensitive as the plate count method; however, copy numbers were one to two logs higher than the colony-forming units obtained by the plate count methods. In the present work, the real-time PCR assay was shown to significantly reduce the total time necessary for the detection of Salmonella spp. in foods and to provide an important model for other foodborne pathogens.

Developing species-specific quantitative real-time polymerase chain reaction primers for detecting Lautropia mirabilis

  • Park, Soon-Nang;Kook, Joong-Ki
    • International Journal of Oral Biology
    • /
    • v.46 no.3
    • /
    • pp.140-145
    • /
    • 2021
  • This study aimed to develop Lautropia mirabilis-specific quantitative real-time polymerase chain reaction (qPCR) primers based on the sequence of DNA-directed RNA polymerase subunit beta gene. The PrimerSelect program was used in designing of the qPCR primers, RTLam-F4 and RTLam-R3. The specificity of the qPCR primers were performed by conventional PCR with 37 strains of 37 oral bacterial species, including L. mirabilis. The sensitivity of the primers was determined by qPCR with the serial dilution of purified genomic DNA of L. mirabilis KCOM 3484, ranged from 4 ng to 4 fg. The data showed that the qPCR primers could detect only L. mirabilis strains and as little as 40 fg of genome DNA of L. mirabilis KCOM 3484. These results indicate that this qPCR primer pair (RTLam-F4/RTLam-R3) may be useful for species-specific detection of L. mirabilis in epidemiological studies of oral bacterial infectious diseases such as periodontal disease.

TaqMan probe real-time PCR for quantitative detection of bovine adenovirus type 1 during the manufacture of biologics and medical devices using bovine-derived raw materials (소유래 성분 원재료 사용 생물의약품과 의료기기 제조 공정에서 bovine adenovirus type 1 정량 검출을 위한 TaqMan probe real-time PCR)

  • Ko, Woon Young;Noh, Na Gyeong;Kim, In Seop
    • Korean Journal of Microbiology
    • /
    • v.51 no.3
    • /
    • pp.199-208
    • /
    • 2015
  • Biologics and medical devices manufactured with bovine-derived raw materials have the risk of viral contamination. Therefore, viral validation study is essential to ensure the safety of the products. Bovine adenovirus type-1 (BAdV-1) is one of the common bovine viral pathogens. For quantitative detection of BAdV-1 during the manufacture of biologics and medical devices, a TaqMan probe real-time PCR method was developed. Specific primers and TaqMan probe for amplifying and detecting BAdV-1 DNA were designed. Specificity, limit of detection (LOD), and robustness of the method was validated according to international guideline on the validation of nucleic acid amplification tests for the pathogen detection. The sensitivity of the assay was found to be $7.44{\times}10^1\;TCID_{50}/ml$. The real-time PCR method was reproducible, very specific to BAdV-1, and robust. Moreover, the method was successfully applied to the validation of Chinese Hamster Ovary (CHO)-K1 cells artificially infected with BAdV-1, a commercial CHO master bank, and bovine type 1 collagen. The overall results indicate that this rapid, specific, sensitive, and robust assay can be reliably used for quantitative detection of BAdV-1 contamination during the manufacture of biologics and medical devices using bovine-derived raw materials.

Development of TaqMan Probe Real-Time RT-PCR for Quantitative Detection of Porcine Transmissible Gastroenteritis Virus During the Manufacture of Biopharmaceuticals (생물의약품 제조 공정에서 Porcine transmissible gastroenteritis virus 정량 검출을 위한 TaqMan Probe Real-Time RT-PCR 개발)

  • Lee, Jae Il;Han, Sang Eun;Kim, In Seop
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.3
    • /
    • pp.267-274
    • /
    • 2015
  • Biopharmaceuticals and the cell substrates used for their manufacture are currently tested for porcine adventitious viruses due to the widespread use of porcine trypsin in cell culture. Porcine transmissible gastroenteritis virus (PTGV) is one of the major adventitious porcine viruses causing contaminated during the manufacture of biopharmaceuticals. Therefore, rapid and sensitive detection of PTGV is essential in ensuring the safety of biopharmaceuticals. A TaqMan probe real-time RT-PCR method was developed for the quantitative detection of PTGV contamination in cell substrates, raw materials, manufacturing processes, and final products, as well as PTGV clearance validation. Specific primers for the amplification of PTGV RNA were selected, and PTGV RNA was quantified by use of a specific TaqMan probe. Specificity, limit of detection (LOD), and robustness of the method was validated according to international guidelines on the validation of nucleic acid amplification tests. The sensitivity of the assay was calculated to be 1.10 × 100 TCID50/ml. The real-time RT-PCR method was validated to be reproducible, very specific to PTGV, and robust. The established real-time RT-PCR assay was successfully applied to the validation of Chinese Hamster Ovary (CHO)-K1 cells artificially infected with PTGV.

Surveillance of Acanthamoeba spp. and Naegleria fowleri in environmental water by using the duplex real-time PCR (Duplex real-time PCR을 이용한 수계 중 가시아메바와 파울러자유아메바 조사)

  • Kim, Min-jeong;Lee, Gyu-Cheol;Kim, Kunwoo;Lee, Hyunji;Kim, Min Young;Seo, Dae Keun;Lee, Jeong Yeob;Cho, Young-Cheol
    • Korean Journal of Microbiology
    • /
    • v.54 no.2
    • /
    • pp.98-104
    • /
    • 2018
  • Naegleria fowleri and Acanthamoeba spp. are free-living amoebas that are widely distributed in natural environments. Although uncommon, infection with these protozoans can cause fatal disease in humans and animals. In this study, in order to select the appropriate method to survey Naegleria fowleri and Acanthamoeba spp. in water samples, four molecular biology techniques and one commercially available kit for real-time PCR were compared. The results indicated that the duplex real-time PCR was the most sensitive, and could be used to simultaneously detect two different free-living amoebas. Using the duplex real-time PCR approach, the two free-living amoebas were surveyed in three local streams in Daejeon, Republic of Korea. The concentrated free-living amoebas were inoculated onto non-nutrient agar plates which had been spread with heat-inactivated Escherichia coli and incubated for 5~7 days. After incubation, gDNA was extracted and used as the template for amplification by duplex real-time PCR. Acanthamoeba spp. and N. fowleri was detected from ten (83.3%) and two (16.6%) of the twelve samples, respectively. As these two free-living amoebas can be fatal, continuous surveillance is needed to track their distribution in the aquatic environment for the drinking water safety.