• Title/Summary/Keyword: real-scale structure

Search Result 298, Processing Time 0.035 seconds

Accuracy assessment of real-time hybrid testing for seismic control of an offshore wind turbine supporting structure with a TMD

  • Ging-Long Lin;Lyan-Ywan Lu;Kai-Ting Lei;Shih-Wei Yeh;Kuang-Yen Liu
    • Smart Structures and Systems
    • /
    • v.31 no.6
    • /
    • pp.601-619
    • /
    • 2023
  • In this study, the accuracy of a real-time hybrid test (RTHT) employed for a performance test of a tuned mass damper (TMD) on an offshore wind turbine (OWT) with a complicated jacket-type supporting structure is quantified and evaluated by comparing the RTHT results with the experimental data obtained from a shaking table test (STT), in which a 1/25-scale model for a typical 5-MW OWT controlled by a TMD was tested. In the RTHT, the jacket-type OWT structure was modelled using both multiple-DOF (MDOF) and single-DOF (SDOF) numerical models. When compared with the STT test data, the test results of the RTHT show that while the SDOF model, which requires less control computational time, is able to well predict the peak responses of the nacelle and TMD only, the MDOF model is able to effectively predict both the peak and over-all time-history responses at multiple critical locations of an OWT structure. This also indicates that, depending on the type of structural responses considered, an RTHT with either an SDOF or a MDOF model may be a promising alternative to the STT to assess the effectiveness of a TMD for seismic mitigation in an OWT context.

Application and Evaluation of Real Industry Color(RIC) Device for On-line E-trading of Textile Products (섬유 전자온라인 상거래를 위한 Real Industry Color(RIC) Device의 적용 및 평가에 관한 연구)

  • Bin, Soyoung;Kim, Dongkwon;Park, Yooncheol;Park, Soonyoung;Bae, Jin-Seok
    • Textile Coloration and Finishing
    • /
    • v.25 no.1
    • /
    • pp.65-69
    • /
    • 2013
  • PET fabrics of various luster, fiber thickness(denier), and weaving structure were dyed at the same conditions and determined their grey scale by using naked eyes, computer color matching (CCM) system, and real industry color (RIC) device to evaluate the effectiveness of RIC device developed in this study. As for the luster of fabrics, bright PET showed more differences when compared with semi-dull and full-dull. PET in both naked eyes and RIC device since the RIC device provide the real image of fabrics to observers. As for the fiber thickness, the results of naked eyes and RIC device were very similar while the result of CCM showed lower color grade. Finally, as for the weaving structures of PET fabrics, all the test results by naked eyes, CCM, and RIC device showed almost same grey scales. In these regards, the RIC device developed in this study was comparable to naked eyes by providing the real image of fabrics, however it was difficult to compare the very bright colors such as yellow and fiber thickness(denier) and weaving structure of fabrics.

A Study on Characteristics of Roof 'Jucsim' Structure Combustion Real Scale Fire Test on Wooden Structure Heritage Building (목조 건축 문화재 적심부 실물화재 실험을 통한 연소 특성 연구)

  • Roh, Sam-Kew;Ham, Eun-Gu
    • Fire Science and Engineering
    • /
    • v.24 no.1
    • /
    • pp.95-102
    • /
    • 2010
  • The combustion characteristics of roof 'Jucsim' structure was analysed using real scale fire test on wooden structure heritage building. the fire test model was made to consider roof timberling internal structure for a Sunglemun. Structure of test body layed lime, soil, 'Jucsin' and ceiling board excepting roof tile to find heat propagation process by setting thermocouples. The first test to find fire growth and heat propagation process in the part of ceiling. The second test organized to find the efficiency of fire proof paint between ceiling board and inside of Jucsim structure. The third test try to get the performance level of fire proof fabric with the same manner. The result showed from the test proof the heavy smoke exposure with limited effect of fire proof paint however, reliable fire resistance effect showed in case of fire proof fabric.

Potential Ruse as a function of the Buried Depth for Structure (구조체의 매설깊이에 따른 전위상승)

  • Gil, Hyoung-Jun;Kim, Dong-Ook;Kim, Dong-Woo;Lee, Ki-Yeon;Kim, Hyang-Kon
    • Proceedings of the KIEE Conference
    • /
    • 2006.07e
    • /
    • pp.27-28
    • /
    • 2006
  • This paper deals with an approach to the reduction of potential rise according to the buried depth of structure. In order to analyze the surface potential rise of structure, an electrolytic tank which simulates the semi-infinite earth has been used. The potential rise has been measured and analyzed for types of structure using an electrolytic tank experimental apparatus in real time. The structure models were designed through reducing real buildings and fabricated with two types on a scale of one-one hundred sixty When a test current flowed through structure models, the potential rise of outline frame type(structure model A) was more high than that of electric cage type(structure model B). The distributions of surface potential rise are dependent on the buried depth of structure model.

  • PDF

Development of a generalized scaling law for underwater explosions using a numerical and experimental parametric study

  • Kim, Yongtae;Lee, Seunggyu;Kim, Jongchul;Ryu, Seunghwa
    • Structural Engineering and Mechanics
    • /
    • v.77 no.3
    • /
    • pp.305-314
    • /
    • 2021
  • In order to reduce enormous cost of real-scale underwater explosion experiments on ships, the mechanical response of the ships have been analyzed by combining scaled-down experiments and Hopkinson's scaling law. However, the Hopkinson's scaling law is applicable only if all variables vary in an identical ratio; for example, thickness of ship, size of explosive, and distance between the explosive and the ship should vary with same ratio. Unfortunately, it is infeasible to meet such uniform scaling requirement because of environmental conditions and limitations in manufacturing scaled model systems. For the facile application of the scaling analysis, we propose a generalized scaling law that is applicable for non-uniform scaling cases in which different parts of the experiments are scaled in different ratios compared to the real-scale experiments. In order to establish such a generalized scaling law, we conducted a parametric study based on numerical simulations, and validated it with experiments and simulations. This study confirms that the initial peak value of response variables in a real-scale experiment can be predicted even when we perform a scaled experiment composed of different scaling ratios for each experimental variable.

Practical Experience with Full-scale Performance Verification of Dynamic Vibration Absorbers installed in Tall Buildings

  • Love, J.S.;Morava, B.
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.2
    • /
    • pp.85-92
    • /
    • 2021
  • Dynamic vibration absorbers (DVAs) in the form of tuned sloshing dampers (TSDs) and tuned mass dampers (TMDs) are commonly used to reduce the wind-induced motion of high-rise buildings. Full-scale performance of structure-DVA systems must be evaluated during the DVA commissioning process using structural monitoring data. While the random decrement technique (RDT) is sometimes employed to evaluate the DVA performance, it is shown to have no theoretical justification for application to structure-DVA systems, and to produce erroneous results. Subsequently, several practical methods with a sound theoretical basis are presented and illustrated using simulated and real-world data. By monitoring the responses of the structure and DVA simultaneously, it is possible to directly measure the effective damping of the system or perform system identification from which the DVA performance can be evaluated.

Development of Real-Time Flutter Analysis Program (실시간 플러터 해석 프로그램 개발)

  • Lee, Ju-Yeon;Bae, Jae-Sung;Hwang, Jai-Hyuk;Roh, Jin-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.2
    • /
    • pp.99-105
    • /
    • 2017
  • Wind tunnel test which is one of the method to predict the aeroelastic characteristics has difficulties to make scale-down structural model and achieve a specified free stream velocity. It is very costly and complicated to consider similarity relationships between real structure and scale-down structural model. "Dry Wind-Tunnel(DWT)" was proposed to overcome these difficulties. This is made up of Ground Vibration Test hardware and software to compute the aerodynamic forces. In the present study, program for computing the real-time unsteady aerodynamic forces which is an important part of DWT system was developed by Matlab Simulink and dSPACE. In addition, using this program and software which is a part of the test structure, a real-time flutter analysis was conducted and the results are verified by ZAERO.

A Study on the Structure of Turbulent non-Premixed Oxy-fuel Flame Using CMC Model-based Simulation (CMC 모델 기반 수치해석을 사용한 순산소 난류확산화염 구조 연구)

  • Kim, Jong-Soo;Sreedhara, S.;Huh, Kang-Yeol;Yang, Won
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.1
    • /
    • pp.31-43
    • /
    • 2008
  • Oxy-fuel flame has a significantly different structure from that of air-fuel flame because of its high temperature. This study is aimed to find out the difference of the oxy-fuel flame structure in order to understand reaction mechanism closely, which is crucial to design real-scale oxy-fuel combustion system. By examining pictures of counterflow flame and LIF images, we found that oxy-fuel flame had two-zone structure: fuel decomposition region and distributed CO oxidation region. In the oxy-fuel flame, OH radical was distributed intensely through the whole flame due to its higher flame temperature than crossover temperature. For showing those features of the oxy-fuel flame, 1 MW scale IFRF oxy-natural gas burner was simulated by conditional moment closure(CMC) model. Calculation results were compared with experimental data, and showed agreements in trend. In the simulated distributions of fuel decomposition/CO oxidation rates, CO oxidation region was also separated from fuel decomposition zone considerably, which showed the two-zone structure in the oxy-fuel flame.

  • PDF

Analysis of pipe roof method test with a reduced-scale model (축소모형 강관추진실험 경향 분석)

  • Eum, Ki-Young;Jung, Kwan-Dong;Lee, Sung-Hyuk;Cheon, Jeong-Yeon;Jang, Hee-Jung;Lee, Jong-Tae
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.664-670
    • /
    • 2010
  • The study on mechanical behavior of the structure at the site includes experimental method and numerical analysis method. Experimental method is categorized into true-scale test and laboratory model test. A laboratory model test is to monitor the failure mechanism with a model simulated similar with a real ground so as to identify the quantitative result, while a true-scale model test is the approach which enables to identify the potential problems that may occur with a simulated construction situation similar with a real site circumstance. Thus this study was intended to carry out the experimental test of non open-cut excavation by pipe roof method which is mostly common in domestic sites. as well as was aimed at identifying the ground behavior occurred during pipe penetration using laboratory model test. Appropriate reduced-scale model was selected, taking into account of domestic geological characteristics and operation characteristics of traditional and high-speed rail trains and the qualitative evaluation of displacement was carried out based on a certain ground loss volume depending on excavation after categorizing trackbed settlement pattern by depth of top soil.

  • PDF

Experimental Verification of a Liquid Damper with Changeable Natural Frequency for Building Response Control (고유진동수 조절이 가능한 액체댐퍼의 건물응답 제어실험)

  • Kim, Dong-Ik;Min, Kyung-Won;Park, Ji-Hun;Kim, Jae-Keon;Hwang, Kyu-Seok;Gil, Yong-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.4
    • /
    • pp.323-330
    • /
    • 2012
  • This study deals with the experiments of liquid dampers with multi cells whose vertical tubes are divided into several square columns for easily changing natural frequencies. Shaking table test is performed to verify control effectiveness of the dampers which are installed on a building structure. To design liquid dampers, a 64-story building structure is reduced to a SDOF structure with 1/20 of similitude laws based on acceleration. The structure model is made up to adjust its mass and stiffness easily, with separate mass and drive parts. Mass parts indicate real structure's weights and drive parts indicate real structure's stiffness with springs and LM guides. Manufactured liquid damper has 18 cells and its natural frequency ranges are 0.65Hz to 0.81Hz. Shaking table test is carried out with one way excitation to compare with only accelerations of a large-scale structure and a structure installed with liquid dampers. Control performance of the liquid damper is expressed by the transfer function from shaking table accelerations to the large-scale structure ones. Testing results show that the liquid damper reduced a large-scale structure's response by tuned natural frequencies.