• 제목/요약/키워드: real time systems

검색결과 6,607건 처리시간 0.031초

Ensemble Deep Network for Dense Vehicle Detection in Large Image

  • Yu, Jae-Hyoung;Han, Youngjoon;Kim, JongKuk;Hahn, Hernsoo
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권1호
    • /
    • pp.45-55
    • /
    • 2021
  • 본 논문은 고해상도를 가지는 영상에서 겹쳐져있는 소형 물체를 효과적으로 검출하고 추적하는 알고리즘을 제안한다. Coarse to Fine 방식을 기본으로 하는 두 개의 Deep-Learning Network을 앙상블 형태로 구성하여 차량이 존재할 위치를 미리 판단하고 서브영역으로 선택한 이미지로부터 차량을 정확하게 검출한다. Coarse 단계에서는 서로 다른 다수의 Deep-Learning Network 에 대한 각각의 결과로 Voting Space를 생성한다. 각 Voting Space 의 조합을 통해 Voting Map을 만들고 차량이 존재할 위치를 선택한다. Fine 단계에서는 Coarse 단계에서 선택된 영역을 기준으로 서브영역을 추출하고 해당 영역을 최종 Deep-Learning Network 에 입력한다. 서브 영역은 Voting Map을 이용하여 영상에서의 높이에 적합한 크기의 동적 윈도우를 생성함으로써 정의되며, 본 논문에서는 원거리에서 근거리로 접근하는 도로의 이미지를 대상으로 미리 계산된 매핑테이블을 적용하였다. 각 서브 영역 간 이동하는 차량의 동일성 판단은 검출된 영역의 하단 중심점에 대한 근접성을 기반으로 하였으며, 이를 통해 이동하는 차량의 정보를 트래킹 하였다. 실제 주야간 도로 CCTV를 통해 획득한 실시간 영상에서 처리 속도 및 검출 성능을 비교 실험하여 제안한 알고리즘을 평가하였다.

정밀도로지도 제작을 위한 Web GIS 기반 HD Map 프로토타입 구축 연구 (A Study on Building the HD Map Prototype Based on Web GIS for the Generation of the Precise Road Maps)

  • 권용하;정윤재;조현지;구본엽
    • 한국지리정보학회지
    • /
    • 제24권2호
    • /
    • pp.102-116
    • /
    • 2021
  • 4차 산업혁명의 대표라고 할 수 있는 자율주행차량의 안전한 운행을 위해서는 센서 기술, 소프트웨어 기술, 차량 기술 등 다양한 기술 조합이 필요하다. 자율주행차량은 차량 내에 탑재된 다양한 센서를 통해서 현재의 위치정보와 주변 상황을 인지하여 운전자에게 의존하지 않고 스스로 판단하고 주행하는 차량이다. 완전자율주행을 위해서는 완벽한 인지기술이 필요하고 정밀도로지도는 차선, 정지선, 신호등, 횡단보도 등에 대한 정보를 정밀하게 제공하고 있기 때문에 자율주행 차량에서 발생하는 인지 오차를 최소화시킬 수 있음으로, 신뢰성 있는 자율주행차량을 위해서는 도로 위 다양한 시설물들의 위치정보를 차량에 입력한 정밀지도 정보가 필수적이다. 본 연구에서는 정밀도로지도의 정의 및 필요성 국내외 동향을 분석하고 실제 운영되고 있는 대구광역시 자율주행특화지역(수성의료지구, 약 24km)과 세종특별자치시 행복도시(약 33km), 서울대학교 시흥캠퍼스 FMTC(Future Mobility Technical Center) PG(Proving Ground)를 대상으로 국토지리정보원 MMS(Mobile Mapping System) 측량 성과물을 활용하여 정밀도로지도 서비스인 Web GIS 기반 HD(High Definition) Map 프로토타입을 구축하였다. 추후 연구에서는 본 연구에서 구축한 정밀도로지도 서비스를 자율주행차량 및 관제 시스템에 탑재 시켜 실시간 위치검증 및 위치보정 알고리즘의 성능 검증을 진행하고자 한다.

레이저 기반 형광 영상 시스템의 Signal to Background Ratio 향상 연구 (Study on Improvement of Signal to Background Ratio of Laser-based Fluorescence Imaging System)

  • 김준현;정명영
    • 마이크로전자및패키징학회지
    • /
    • 제27권4호
    • /
    • pp.107-111
    • /
    • 2020
  • 최근 고령화 사회가 진행이 되면서 건강과 진단에 대한 많은 관심이 증대되고 있다. 정확한 진단이 가능한 guided surgery를 위한 다양한 바이오 이미징 시스템 분야가 중요하게 대두되면서 정확한 측정과 실시간 확인 등이 가능한 형광 이미징 시스템이 중요한 분야로 대두되었다. 현재 사용되고 있는 부분은 NIR-I이 주를 이루고 있으나 분해능의 향상 및 깊고 정확하게 형광을 확인하기 위해서 NIR-II 부분의 연구를 많이 진행 중에 있다. 본 논문에서는 NIR-I과 NIR-II의 차이점과 광학적인 특성, 그리고 형광영상 시스템의 SBR(signal to background ration)에 대해서 NIR-II의 미(Mie) 산란을 유한요소(FEM)법을 이용하여 확인을 하였으며 최종적으로 Skin phantom을 제작 및 Fluorescence를 측정을 함으로써 SBR이 NIR-I보다 NIR-II 영역에서 16.2배 더 높은 것을 확인하였다. 형광 이미징 시스템의 SBR 증대는 NIR-I영역대 보다 NIR-II영역이 효과를 이룰 것으로 확인이 되며 이를 통해 guided surgery나 bio-sensor, 또한 형광을 이용한 전자부품의 결함을 확인할 수 있는 디바이스 등의 다양한 응용분야에 활용할 수 있을 것으로 예상한다.

Effects of using different roughages in the total mixed ration inoculated with or without coculture of Lactobacillus acidophilus and Bacillus subtilis on in vitro rumen fermentation and microbial population

  • Miguel, Michelle;Mamuad, Lovelia;Ramos, Sonny;Ku, Min Jung;Jeong, Chang Dae;Kim, Seon Ho;Cho, Yong Il;Lee, Sang Suk
    • Animal Bioscience
    • /
    • 제34권4호
    • /
    • pp.642-651
    • /
    • 2021
  • Objective: This study aimed to determine the effects of different roughages in total mixed ration (TMR) inoculated with or without coculture of Lactobacillus acidophilus (L. acidophilus) and Bacillus subtilis (B. subtilis) on in vitro rumen fermentation and microbial population. Methods: Three TMRs formulations composed of different forages were used and each TMR was grouped into two treatments: non-fermented TMR and fermented TMR (F-TMR) (inoculated with coculture of L. acidophilus and B. subtilis). After fermentation, the fermentation, chemical and microbial profile of the TMRs were determined. The treatments were used for in vitro rumen fermentation to determine total gas production, pH, ammonianitrogen (NH3-N), and volatile fatty acids (VFA). Microbial populations were determined by quantitative real-time polymerase chain reaction (PCR). All data were analyzed as a 3×2 factorial arrangement design using the MIXED procedure of Statistical Analysis Systems. Results: Changes in the fermentation (pH, lactate, acetate, propionate, and NH3-N) and chemical composition (moisture, crude protein, crude fiber, and ash) were observed. For in vitro rumen fermentation, lower rumen pH, higher acetate, propionate, and total VFA content were observed in the F-TMR group after 24 h incubation (p<0.05). F-TMR group had higher acetate concentration compared with the non-fermented group. Total VFA was highest (p<0.05) in F-TMR containing combined forage of domestic and imported source (F-CF) and F-TMR containing Italian ryegrass silage and corn silage (F-IRS-CS) than that of TMR diet containing oat, timothy, and alfalfa hay. The microbial population was not affected by the different TMR diets. Conclusion: The use of Italian ryegrass silage and corn silage, as well as the inoculation of coculture of L. acidophilus and B. subtilis, in the TMR caused changes in the pH, lactate and acetate concentrations, and chemical composition of experimental diets. In addition, F-TMR composed with Italian ryegrass silage and corn silage altered ruminal pH and VFA concentrations during in vitro rumen fermentation experiment.

딥러닝을 사용하는 IoT빅데이터 인프라에 필요한 DNA 기술을 위한 분산 엣지 컴퓨팅기술 리뷰 (Distributed Edge Computing for DNA-Based Intelligent Services and Applications: A Review)

  • ;조위덕
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제9권12호
    • /
    • pp.291-306
    • /
    • 2020
  • 오늘날 데이터 네트워크 AI (DNA) 기반 지능형 서비스 및 애플리케이션은 비즈니스의 삶의 질과 생산성을 향상시키는 새로운 차원의 서비스를 제공하는 것이 현실이 되었다. 인공지능(AI)은 IoT 데이터(IoT 장치에서 수집한 데이터)의 가치를 높이며, 사물 인터넷(IoT)은 AI의 학습 및 지능 기능을 촉진한다. 딥러닝을 사용하여 대량의 IoT 데이터에서 실시간으로 인사이트를 추출하려면 데이터가 생성되는 IoT 단말 장치에서의 처리능력이 필요하다. 그러나 딥러닝에는 IoT 최종 장치에서 사용할 수 없는 상당 수의 컴퓨팅 리소스가 필요하다. 이러한 문제는 처리를 위해 IoT 최종 장치에서 클라우드 데이터 센터로 대량의 데이터를 전송함으로써 해결되었다. 그러나 IoT 빅 데이터를 클라우드로 전송하면 엄청나게 높은 전송 지연과 주요 관심사인 개인 정보 보호 문제가 발생한다. 분산 컴퓨팅 노드가 IoT 최종 장치 가까이에 배치되는 엣지 컴퓨팅은 높은 계산 및 짧은 지연 시간 요구 사항을 충족하고 사용자의 개인 정보를 보호하는 실행 가능한 솔루션이다. 본 논문에서는 엣지 컴퓨팅 내에서 딥러닝을 활용하여 IoT 최종 장치에서 생성된 IoT 빅 데이터의 잠재력을 발휘하는 현재 상태에 대한 포괄적인 검토를 제공한다. 우리는 이것이 DNA 기반 지능형 서비스 및 애플리케이션 개발에 기여할 것이라고 본다. 엣지 컴퓨팅 플랫폼의 여러 노드에서 딥러닝 모델의 다양한 분산 교육 및 추론 아키텍처를 설명하고 엣지 컴퓨팅 환경과 네트워크 엣지에서 딥러닝이 유용할 수 있는 다양한 애플리케이션 도메인에서 딥러닝의 다양한 개인 정보 보호 접근 방식을 제공한다. 마지막으로 엣지 컴퓨팅 내에서 딥러닝을 활용하는 열린 문제와 과제에 대해 설명한다.

실시간 시선 추적기반 스마트 의료기기 고찰 (Technical Survey on the Real Time Eye-tracking Pointing Device as a Smart Medical Equipment)

  • 박정훈;임강빈
    • 스마트미디어저널
    • /
    • 제10권1호
    • /
    • pp.9-15
    • /
    • 2021
  • 본 논문에서 고안된 시선추적 시스템은 루게릭(Lou Gehrig's)이나 각종 근육 관련 질환으로 신체가 부자연스러운 분들을 위해 쉽게 접근할 수 있도록 고안된 안구기반 컴퓨터 입력 장치로, 약 1,700명 정도로 추산되는 국내 루게릭 환자 수와 각종사고나 질환에 의해 몸을 움직이기 힘든 환자의 수를 합쳐 잠재적 수요만 국내 3만 명에 이르는 사용자를 위한 안구입력 장치이다. 이 안구 입력 장치는 소수의 사용자를 위한 장치이기 때문에 시중에서는 수많은 종류의 상용기기가 제공되고 있어, 이 잠재적 사용자들이 사용하기에는 가격도 비싸고 사용방법도 어려워, 접근성이 많이 떨어지고 있다. 그 이유로는, 각 개인의 경제사정과 스마트 디바이스에 대한 개별 사용 경험도 조금씩 달라 시중 시선추적 시스템을 사용해보기에는 비용 면이나 사용성 면에서 접근하기가 어려운 경우가 대부분이라 할 수 있다. 이에 따라, 저가의 기기지만 엄선된 부품과 사용하기 편리한 기술을 통해 IT 기기로의 접근성을 개선하여 사용자들에게 쉬운 접근이 가능하도록 하는 시도는 반드시 필요하다. 이에, 본 논문에서는 여러 종류의 시선추적 시스템을 사용했던 사용자들의 자발적 VoC(Voice of Customer)를 통해 기존 시스템의 부족한 점을 개선하고, 사용성 테스트를 통해 이를 만족하는 시스템을 보완/설계함으로써 훨씬 더 많은 사람 및 환자들이 편리하게 사용할 수 있게하고, 기존 PCCR 시스템 대비 계산량을 15배 이상 줄이는 동시에, 시선 오차도 0.5~1도 이내로 보완된 우수한 성능의 시선추적 시스템을 제안한다.

초목을 포함한 도로 환경에서 주행 가능 영역 검출을 위한 필터링 기반 방법 및 하드웨어 구조 (Filtering-Based Method and Hardware Architecture for Drivable Area Detection in Road Environment Including Vegetation)

  • 김영현;하지석;최철호;문병인
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권1호
    • /
    • pp.51-58
    • /
    • 2022
  • 첨단 운전자 보조 시스템(advanced driver assistance system)의 주요 기능 중 하나인 주행 가능 영역 검출은 차량이 안전하게 주행할 수 있는 영역을 검출하는 것을 의미한다. 주행 가능 영역 검출은 운전자의 안전과 밀접한 연관이 있으며 실시간 동작과 높은 정확도 성능을 요구한다. 이러한 조건들을 충족하기 위해, 영상의 각 행에서 도로 시차 값을 계산하여 주행 가능 영역을 검출하는 V-시차 기반 방법이 폭넓게 사용된다. 그러나 V-시차 기반 방법은 시차 값이 정확하지 않거나 객체의 시차 값이 도로의 시차 값과 동일한 경우, 도로가 아닌 영역을 도로로 오검출할 수 있다. 또한, 고속도로 및 시골길과 같이, 초목을 포함한 도로 환경에서 초목의 시차는 도로의 시차 특성과 매우 유사하기 때문에 초목 영역이 주행 가능 영역으로 오검출될 수 있다. 이에 본 논문에서는 V-시차의 특성으로 인한 오검출 횟수를 감소시킴으로써 초목 영역을 포함한 도로 환경에서 높은 정확도를 갖는 주행 가능 영역 검출 방법 및 하드웨어 구조를 제안한다. 제안하는 방법의 성능을 평가하기 위해 KITTI road dataset의 289장 영상을 사용하였을 때, 제안하는 방법은 90.12%의 정확도와 97.96%의 재현율을 보인다. 또한, 제안하는 하드웨어 구조를 FPGA 플랫폼에 구현하였을 때, 제안하는 하드웨어 구조는 8925개의 slice registers와 7066개의 slice LUTs를 사용한다.

클라우드 환경에서 블록체인을 이용한 포그 기반 IoT 서비스 상호운용 시스템 (A Fog-based IoT Service Interoperability System using Blockchain in Cloud Environment)

  • 김미선;박용석;서재현
    • 스마트미디어저널
    • /
    • 제11권3호
    • /
    • pp.39-53
    • /
    • 2022
  • 사물 클라우드(CoT, Cloud of Things)는 사물인터넷(IoT, Internet of Things) 애플리케이션에 클라우드 서비스가 지원하는 무제한 저장기능과 처리능력을 제공할 수 있다. 그러나, 중앙 집중식 사물 클라우드에서는 병목 문제, 사물 클라우드 네트워크의 중단으로 이어질 수 있는 단일 장애 지점을 발생시킬 수 있다. 본 논문에서는 중앙 집중식 사물 클라우드의 문제를 해결하고 서로 다른 서비스 도메인 간 상호운용을 위하여, 분산 포그 컴퓨팅과 블록체인 기술을 적용한 IoT 서비스 상호운용 시스템을 제안한다. 분산 포그를 사용하여 IoT 장치와 지역적으로 가까운 거리에 위치한 포그 시스템에서 실시간 데이터 처리 및 서비스를 제공하고, 블록체인의 스마트 컨트렉트와 분산 원장을 이용하여 각 포그간에 서비스 상호운용이 가능하도록 한다. 제안 시스템은 클라우드로부터 서비스를 위임받은 분산 포그에서 가까운 지역 내 서비스를 제공하며, 포그 간에도 클라우드를 거치지 않고, 다른 포그의 서비스를 접근할 수 있다. 또한, 블록체인 네트워크상에서 클라우드와 포그 노드들은 서비스 권한 토큰 발행 정보를 공유함으로써 토큰에 대한 무결성을 보장하고 포그 노드들 간 신뢰할 수 있는 서비스 상호운용이 수행될 수 있다.

지하 공동구 화재재난 감지를 위한 음향수집 프로토타입 장치 및 시스템 모듈 개발 (Development of a Acoustic Acquisition Prototype device and System Modules for Fire Detection in the Underground Utility Tunnel)

  • 이병진;박철우;이미숙;정우석
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권5호
    • /
    • pp.7-15
    • /
    • 2022
  • 지하 공동구 화재 발생에 따른 직·간접적 피해는 사회 전반에 매우 큰 영향을 미치므로 이를 사전에 예방 및 관리하기 위한 노력이 필요하다. 화재의 발생 원인 중 케이블 자체에서 발생하는 경우는 단락, 누전, 과전류에 의한 발화 및 도체 접속부 과열, 절연체의 졀연 파괴에 의한 스파크 발생으로 인한 발화가 대부분이다. 지하 공동구의 특성에 의해 발생하는 이러한 원인을 조기에 찾아내기 위해서 지하 공동구는 영상분석을 활용한 감지 시스템을 통해 재난 및 안전사고 방지를 위한 상시 관리를 하기 위한 노력을 하고 있으며, 이 중에서 CCTV 기반의 딥러닝 영상분석 기술을 적용한 화재 감지 시스템 개발사례가 보고되고 있다. 하지만 CCTV의 경우는 사각지대가 존재하기 때문에 이를 좀 더 보완하기 위해서 스파크 발생으로 불꽃이 발생하기 전 스파크 소리를 사전에 감지해 화재 예방을 할 수 있는 고성능의 음향 기반 딥러닝 모델을 개발하고자 한다. 본 연구에서 마이크 센서를 이용하여 지하 공동구 환경에서 음향을 수집을 할 수 있는 방안을 프로토타입 모듈 개발과 실험을 통해 제안하며, 결로가 많은 지하 공동구 환경에서 음향 센서를 배치하고 기능 이상 없이 실시간으로 정보 수집 여부에 대한 가능성을 검증한다.

적정 스마트공장: 산업안전 기술로의 적용 가능성 실증 (Appropriate Smart Factory : Demonstration of Applicability to Industrial Safety)

  • 권귀감;정우균;김형중;전영준;김영균;이현수;박수영;박세진;홍성진;윤원재;정구엽;이규화;안성훈
    • 적정기술학회지
    • /
    • 제7권2호
    • /
    • pp.196-205
    • /
    • 2021
  • 산업안전에 대한 관심이 증가하는 가운데 최근 제조현장에서 다양한 방법으로 적용되고 있는 스마트공장 기술을 활용한 산업재해 방지 기술도 다양하게 연구되고 있다. 하지만 현실적인 문제로 인해 산업재해의 큰 비중을 차지하는 중소기업에서 이러한 스마트공장 기술의 적용을 통한 산업재해 방지에 어려움이 따르고 있다. 본 연구에서는 산업재해 유형별 맞춤형 모니터링 및 경보 시스템을 개발하고 실제 현장에 적용하였으며, 이를 통해 중소기업에서 활용할 수 있는 적정 스마트공장 기술을 통한 산업재해 방지 기술을 실증하였다. 작업자 신체 접근, 누전 및 과전류, 고온에 의한 화재 및 화상, 유해물질 배출이라는 네 가지 주요 재해 유형에 대해 비전센서, 전류센서, 온도센서 및 가스센서를 활용하여 맞춤형 모니터링 시스템을 구축하였다. 더불어 모니터링 된 위험요소 빠르게 인지할 수 있도록 작업환경에 맞는 알림 방안을 적용하고, 실시간 데이터 전송 및 디스플레이를 활용하여 작업자와 관리자가 재해 위험을 효과적으로 인지할 수 있도록 하였다. 이러한 적정 스마트공장 기술의 적용 및 실증을 통한 효과를 확인하고 이러한 산업안전 기술의 확산에 대해 논의하고자 한다.