• Title/Summary/Keyword: real time object tracking

Search Result 422, Processing Time 0.036 seconds

Twitter Issue Tracking System by Topic Modeling Techniques (토픽 모델링을 이용한 트위터 이슈 트래킹 시스템)

  • Bae, Jung-Hwan;Han, Nam-Gi;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.109-122
    • /
    • 2014
  • People are nowadays creating a tremendous amount of data on Social Network Service (SNS). In particular, the incorporation of SNS into mobile devices has resulted in massive amounts of data generation, thereby greatly influencing society. This is an unmatched phenomenon in history, and now we live in the Age of Big Data. SNS Data is defined as a condition of Big Data where the amount of data (volume), data input and output speeds (velocity), and the variety of data types (variety) are satisfied. If someone intends to discover the trend of an issue in SNS Big Data, this information can be used as a new important source for the creation of new values because this information covers the whole of society. In this study, a Twitter Issue Tracking System (TITS) is designed and established to meet the needs of analyzing SNS Big Data. TITS extracts issues from Twitter texts and visualizes them on the web. The proposed system provides the following four functions: (1) Provide the topic keyword set that corresponds to daily ranking; (2) Visualize the daily time series graph of a topic for the duration of a month; (3) Provide the importance of a topic through a treemap based on the score system and frequency; (4) Visualize the daily time-series graph of keywords by searching the keyword; The present study analyzes the Big Data generated by SNS in real time. SNS Big Data analysis requires various natural language processing techniques, including the removal of stop words, and noun extraction for processing various unrefined forms of unstructured data. In addition, such analysis requires the latest big data technology to process rapidly a large amount of real-time data, such as the Hadoop distributed system or NoSQL, which is an alternative to relational database. We built TITS based on Hadoop to optimize the processing of big data because Hadoop is designed to scale up from single node computing to thousands of machines. Furthermore, we use MongoDB, which is classified as a NoSQL database. In addition, MongoDB is an open source platform, document-oriented database that provides high performance, high availability, and automatic scaling. Unlike existing relational database, there are no schema or tables with MongoDB, and its most important goal is that of data accessibility and data processing performance. In the Age of Big Data, the visualization of Big Data is more attractive to the Big Data community because it helps analysts to examine such data easily and clearly. Therefore, TITS uses the d3.js library as a visualization tool. This library is designed for the purpose of creating Data Driven Documents that bind document object model (DOM) and any data; the interaction between data is easy and useful for managing real-time data stream with smooth animation. In addition, TITS uses a bootstrap made of pre-configured plug-in style sheets and JavaScript libraries to build a web system. The TITS Graphical User Interface (GUI) is designed using these libraries, and it is capable of detecting issues on Twitter in an easy and intuitive manner. The proposed work demonstrates the superiority of our issue detection techniques by matching detected issues with corresponding online news articles. The contributions of the present study are threefold. First, we suggest an alternative approach to real-time big data analysis, which has become an extremely important issue. Second, we apply a topic modeling technique that is used in various research areas, including Library and Information Science (LIS). Based on this, we can confirm the utility of storytelling and time series analysis. Third, we develop a web-based system, and make the system available for the real-time discovery of topics. The present study conducted experiments with nearly 150 million tweets in Korea during March 2013.

A USN Based Mobile Object Tracking System for the Prevention of Missing Child (미아방지를 위한 USN 기반 보호대상 이동체 위치확인 시스템)

  • Cha, Maeng-Q;Jung, Dae-Kyo;Kim, Yoon-Kee;Chong, Hak-Jin
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.5
    • /
    • pp.453-463
    • /
    • 2008
  • The missing child problem is no more a personal problem. It became a social problem that all parents must consider. To this, this study applies USN/RFID technology integrated with GIS for the prevention of missing child. Although RFID is not designed for location sensing, but now it is regarded as a device to facilitate real time location awareness. Such advantages of RFID can be integrated with 4S(GIS/GPS/LBS/GNSS) achieving much synergy effects. In order to prevent kidnapping and missing child, it is necessary to provide a missing child preventing system using a ubiquitous computing system. Therefore, the missing child preventing system has been developed using high-tech such as RFID, GPS network, CCTV, and mobile communication. The effectiveness of the missing child prevention system can be improved through an accurate location tracking technology. This study propose and test a location sensing system using the active RFID tags. This study verifies technical applied service, and presents a system configuration model. Finally, this paper confirms missing child prevention system utilization possibility.

Efficient Tracking System for Passengers with the Detection Algorithm of a Stopping Vehicle (차량정차감지 알고리즘을 이용한 탑승자의 효율적 위치추적시스템)

  • Lee, Byung-Mun;Shin, Hyun-Ho;Kang, Un-Gu
    • Journal of Internet Computing and Services
    • /
    • v.12 no.6
    • /
    • pp.73-82
    • /
    • 2011
  • The location-based service is emerging again to the public attention. The location recognition environment up-to-now has been studied with its focus only on a person, an object or a moving object. However, this study proposes a location recognition model that serves to recognize and track, in real time, multiple passengers in a moving vehicle. Identifying the locations of passengers can be classified into two classes: one is to use the high price terminal with GPS function, and the other is to use the economic price compact terminal without GPS function. Our model enables the simple compact terminal to provide effective location recognition under the on-boarding situation by transmitting messages through an interface device and sensor networks for a vehicle equipped with GPS. This technology reduces transmission traffic after detecting the condition of a vehicle (being parked or running), because it does not require transmission/receiving of information on the locations of passengers who are confined in a vehicle when the vehicle is running. Also it extends battery life by saving power consumption of the compact terminal. Hence, we carried out experiments to verify its serviceability by materializing the efficient tracking system for passengers with the detection algorithm of a stopping vehicle proposed in this study. Moreover, about 200 experiments using the system designed with this technology proved successful recognition on on-boarding and alighting of passengers with the maximum transmission distance of 12 km. In addition to this, the running recognition tests showed the test with the detection algorithm of a stopping vehicle has reduced transmission traffic by 41.6% compared to the algorithm without our model.

Implementation of a Task Level Pipelined Multicomputer RV860-PIPE for Computer Vision Applications (컴퓨터 비젼 응용을 위한 태스크 레벨 파이프라인 멀티컴퓨터 RV860-PIPE의 구현)

  • Lee, Choong-Hwan;Kim, Jun-Sung;Park, Kyu-Ho
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.1
    • /
    • pp.38-48
    • /
    • 1996
  • We implemented and evaluated the preformance of a task level pipelined multicomputer "RV860-PIPE(Realtime Vision i860 system using PIPEline)" for computer vision applications. RV860-PIPE is a message-passing MIMD computer having ring interconnection network which is appropriate for vision processing. We designed the node computer of RV860-PIPE using a 64-bit microprocessor to have generality and high processing power for various vision algorithms. Furthermore, to reduce the communication overhead between node computers and between node computer and a frame grabber, we designed dedicated high speed communication channels between them. We showed the practical applicability of the implemented system by evaluting performances of various computer vision applications like edge detection, real-time moving object tracking, and real-time face recognition.

  • PDF

FPGA Implementation of SURF-based Feature extraction and Descriptor generation (SURF 기반 특징점 추출 및 서술자 생성의 FPGA 구현)

  • Na, Eun-Soo;Jeong, Yong-Jin
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.4
    • /
    • pp.483-492
    • /
    • 2013
  • SURF is an algorithm which extracts feature points and generates their descriptors from input images, and it is being used for many applications such as object recognition, tracking, and constructing panorama pictures. Although SURF is known to be robust to changes of scale, rotation, and view points, it is hard to implement it in real time due to its complex and repetitive computations. Using 3.3 GHz Pentium, in our experiment, it takes 240ms to extract feature points and create descriptors in a VGA image containing about 1,000 feature points, which means that software implementation cannot meet the real time requirement, especially in embedded systems. In this paper, we present a hardware architecture that can compute the SURF algorithm very fast while consuming minimum hardware resources. Two key concepts of our architecture are parallelism (for repetitive computations) and efficient line memory usage (obtained by analyzing memory access patterns). As a result of FPGA synthesis using Xilinx Virtex5LX330, it occupies 101,348 LUTs and 1,367 KB on-chip memory, giving performance of 30 frames per second at 100 MHz clock.

Multipath Routing Method for QoS Support in WMSNs (WMSN에서 QoS 지원을 위한 다중 경로 라우팅 기법)

  • Bae, Si-Yeong;Lee, Sung-Keun;Park, Kyoung-Wook
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.3
    • /
    • pp.453-458
    • /
    • 2013
  • Aside from the issues like energy saving and maximizing network lifetime. WMSN has another issue to deal with: support of quality of service(QoS) which is required especially for handling real-time data such as object tracking and data gathering. This paper proposes a multipath routing algorithm considering the distance to sink node, energy level and link quality of neighbour nodes. Proposed algorithm supports multipath routing path with high quality links. Hence it helps to reduce a power consumption concentration that happens in particular set of nodes along the frequently selected route. It also specifies a service quality pattern and a service quality level depending on traffic pattern. By doing this, the proposed algorithm can realize a differentiated service with QoS guaranteed data transmission.

A Study of Real Time Object Tracking using Reinforcement Learning (강화학습을 사용한 실시간 이동 물체 추적에 관한 연구)

  • 김상헌;이동명;정재영;운학수;박민욱;김관형
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.87-90
    • /
    • 2003
  • 과거의 이동로봇 시스템은 완전한 자율주행이 주된 목표였으며 그때의 영상정보는 단지 모니터링을 하는 보조적인 수단으로 사용되었다. 그러나 지금은 이동 물체의 추적, 대상 물체의 인식과 판별, 특징 추출과 같은 다양한 응용분야에서 영상정보를 이용하는 연구가 활발히 진행되고 있다 또한 제어 측면에서는 전통적인 제어기법으로는 해결하기 힘들었던 여러 가지 비선형적인 제어를 지능제어 방법을 통하여 많이 해결하곤 하였다. 그러한 지능제어에서 신경망을 많이 사용하기도 한다. 최근에는 신경망의 학습에 많이 사용하는 방법 중 강화학습이 많이 사용되고 있다. 강화학습이란 동적인 제어평면에서 시행착오를 통해, 목적을 이루기 위해 각 상황에서 행동을 학습하는 방법이다. 그러므로 이러한 강화학습은 수많은 시행착오를 거쳐 그 대응 관계를 학습하게 된다. 제어에 사용되는 제어 파라메타는 어떠한 상태에 처할 수 있는 상태와 행동들, 그리고 상태의 변화, 또한 최적의 해를 구할 수 있는 포상알고리즘에 대해 다양하게 연구되고 있다. 본 논문에서 연구한 시스템은 비젼시스템과 Strong Arm 보드를 이용하여 대상물체의 색상과 형태를 파악한 후 실시간으로 물체를 추적할 수 있게 구성하였으며, 또한 물체 이동의 비선형적인 경향성을 강화학습을 통하여 물체이동의 비선형성을 보다 유연하게 대처하여 보다 안정하고 빠르며 정확하게 물체를 추적하는 방법을 실험을 통하여 제안하였다.

  • PDF

Real-time Detection Technique of the Target in a Berth for Automatic Ship Berthing (선박 자동접안을 위한 정박지 목표물의 실시간 검출법)

  • Choi, Yong-Woon;;Kim, Young-Bok;Lee, Kwon-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.5
    • /
    • pp.431-437
    • /
    • 2006
  • In this paper vector code correlation(VCC) method and an algorithm to promote the image-processing performance in building an effective measurement system using cameras are described far automatically berthing and controlling the ship equipped with side-thrusters. In order to realize automatic ship berthing, it is indispensable that the berthing assistant system on the ship should continuously trace a target in the berth to measure the distance to the target and the ship attitude, such that we can make the ship move to the specified location. The considered system is made up of 4 apparatuses compounded from a CCD camera, a camera direction controller, a popular PC with a built-in image processing board and a signal conversion unit connected to parallel port of the PC. The object of this paper is to reduce the image-processing time so that the berthing system is able to ensure the safety schedule against risks during approaching to the berth. It could be achieved by composing the vector code image to utilize the gradient of an approximated plane found with the brightness of pixels forming a certain region in an image and verifying the effectiveness on a commonly used PC. From experimental results, it is clear that the proposed method can be applied to the measurement system for automatic ship berthing and has the image-processing time of fourfold as compared with the typical template matching method.

Development of the Algorithm for Traffic Accident Auto-Detection in Signalized Intersection (신호교차로 내 실시간 교통사고 자동검지 알고리즘 개발)

  • O, Ju-Taek;Im, Jae-Geuk;Hwang, Bo-Hui
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.5
    • /
    • pp.97-111
    • /
    • 2009
  • Image-based traffic information collection systems have entered widespread adoption and use in many countries since these systems are not only capable of replacing existing loop-based detectors which have limitations in management and administration, but are also capable of providing and managing a wide variety of traffic related information. In addition, these systems are expanding rapidly in terms of purpose and scope of use. Currently, the utilization of image processing technology in the field of traffic accident management is limited to installing surveillance cameras on locations where traffic accidents are expected to occur and digitalizing of recorded data. Accurately recording the sequence of situations around a traffic accident in a signal intersection and then objectively and clearly analyzing how such accident occurred is more urgent and important than anything else in resolving a traffic accident. Therefore, in this research, we intend to present a technology capable of overcoming problems in which advanced existing technologies exhibited limitations in handling real-time due to large data capacity such as object separation of vehicles and tracking, which pose difficulties due to environmental diversities and changes at a signal intersection with complex traffic situations, as pointed out by many past researches while presenting and implementing an active and environmentally adaptive methodology capable of effectively reducing false detection situations which frequently occur even with the Gaussian complex model analytical method which has been considered the best among well-known environmental obstacle reduction methods. To prove that the technology developed by this research has performance advantage over existing automatic traffic accident recording systems, a test was performed by entering image data from an actually operating crossroad online in real-time. The test results were compared with the performance of other existing technologies.

Location Tracking and Visualization of Dynamic Objects using CCTV Images (CCTV 영상을 활용한 동적 객체의 위치 추적 및 시각화 방안)

  • Park, Sang-Jin;Cho, Kuk;Im, Junhyuck;Kim, Minchan
    • Journal of Cadastre & Land InformatiX
    • /
    • v.51 no.1
    • /
    • pp.53-65
    • /
    • 2021
  • C-ITS(Cooperative Intelligent Transport System) that pursues traffic safety and convenience uses various sensors to generate traffic information. Therefore, it is necessary to improve the sensor-related technology to increase the efficiency and reliability of the traffic information. Recently, the role of CCTV in collecting video information has become more important due to advances in AI(Artificial Intelligence) technology. In this study, we propose to identify and track dynamic objects(vehicles, people, etc.) in CCTV images, and to analyze and provide information about them in various environments. To this end, we conducted identification and tracking of dynamic objects using the Yolov4 and Deepsort algorithms, establishment of real-time multi-user support servers based on Kafka, defining transformation matrices between images and spatial coordinate systems, and map-based dynamic object visualization. In addition, a positional consistency evaluation was performed to confirm its usefulness. Through the proposed scheme, we confirmed that CCTVs can serve as important sensors to provide relevant information by analyzing road conditions in real time in terms of road infrastructure beyond a simple monitoring role.