In this paper we propose a real-time moving object tracking method on a smart phone camera. By considering the limit of non-learning approach on low-performance platforms, we use the sliding-window detection technique based on histogram features. We solve the problem of the time-consuming histogram computation on each sub-window by adapting the integral histogram. For additional speed and tracking performance, we propose a new adaptive bin method. From the experiments on our dataset, we achieved high speed performance demonstrating 34~63 frames per second.
This paper presents an object tracking method using motion vectors generated in the MPEG4 encoding process and the snake algorithm for active contours. This paper shows the possibility of realtime object tracking during MPEG4 encoding process in a conventional surveillance system. The experiments is performed on a PC platform to prove the effectiveness of the method.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.11
no.4
/
pp.2075-2092
/
2017
Person re-identification is to match pedestrians observed from non-overlapping camera views. It has important applications in video surveillance such as person retrieval, person tracking, and activity analysis. However, it is a very challenging problem due to illumination, pose and viewpoint variations between non-overlapping camera views. In this work, we propose a viewpoint invariant method for matching pedestrian images using orientation of pedestrian. First, the proposed method divides a pedestrian image into patches and assigns angle to a patch using the orientation of the pedestrian under the assumption that a person body has the cylindrical shape. The difference between angles are then used to compute the similarity between patches. We applied the proposed method to real-time global multi-object tracking across multiple disjoint cameras with non-overlapping field of views. Re-identification algorithm makes global trajectories by connecting local trajectories obtained by different local trackers. The effectiveness of the viewpoint invariant method for person re-identification was validated on the VIPeR dataset. In addition, we demonstrated the effectiveness of the proposed approach for the inter-camera multiple object tracking on the MCT dataset with ground truth data for local tracking.
This paper describes a real-time face tracking system using effective detector and Kalman filter. In the proposed system, an image is separated into a background and an object using a real-time updated face color for effective face detection. The face features are extracted using the five types of simple Haar-like features. The extracted features are reinterpreted using Principal Component Analysis (PCA), and interpreted principal components are used for Support Vector Machine (SVM) that classifies the faces and non-faces. The moving face is traced with Kalman filter, which uses the static information of the detected faces and the dynamic information of changes between previous and current frames. The proposed system sets up an initial skin color and updates a region of a skin color through a moving skin color in a real time. It is possible to remove a background which has a similar color with a skin through updating a skin color in a real time. Also, as reducing a potential-face region using a skin color, the performance is increased up to 50% when comparing to the case of extracting features from a whole region.
Neural networks are used in the framework of sensorbased tracking control of robot manipulators. They learn by practice movements the relationship between PSD ( an analog Position Sensitive Detector) sensor readings for target positions and the joint commands to reach them. Using this configuration, the system can track or follow a moving or stationary object in real time. Furthermore, an efficient neural network architecture has been developed for real time learning. This network uses multiple sets of simple backpropagation networks one of which is selected according to which division (corresponding to a cluster of the self-organizing feature map) in data space the current input data belongs to. This lends itself to a very fast training and processing implementation required for real time control.
Cha, Mang Kyu;Kim, Jung Ok;Lee, Won Hee;Yu, Ki Yun
Journal of Korean Society for Geospatial Information Science
/
v.24
no.2
/
pp.25-35
/
2016
Since a sophisticated location determination technology (LDT) is necessary for accurate positioning in urban area environments, numerous studies related to the LDT using the RFID (Radio Frequency IDentification) technology have been implemented for real-time positioning and data transferring. However, there are still lots of unsolved questions especially regarding what to use as base stations and what are corresponding results under the intrinsic complexity of alignment and configuration of components used for the RFID positioning. This study proposes the street light fixtures as base stations where the RFID receivers will be embedded for the mobile tracking scheme. As street light fixtures are usually installed at a certain distance interval, they can be used as base stations for the RFID receiver installation. Using the principle of the single row triangle network, the RFID receiver organization is determined based on the experiments such as recognition distance measurement and tag position accuracy estimation at inside and outside of the single row triangle network. The results verify that the mobile tracking scheme which uses RFID-embedded street light fixtures, suggested and configured in this study, is effective for the real-time outdoor positioning.
Journal of the Korean Institute of Telematics and Electronics B
/
v.31B
no.11
/
pp.63-77
/
1994
This paper describes the real-time system which, through analyzing a sequence of images, can extract motional information on a moving object and can contol servo equipment to always locate the moving object at the center of an image frame. An image is a vast amount of two-dimensional signal, so it takes a lot of time to analyze the whole quantity of a given image. Especially, the time needed to load pixels from a memory to processor increase exponentially as the size of an image increases. To solve such a problem and track a moving object in real-time, this paper addresses how to selectively search the spatial and time domain. Based on the selective search of spatial and time domain, this paper suggests various types of techniques which are essential in implementing a real-time tracking system. That is, this paper describes how to detect an entrance of a moving object in the field of view of a camera and the direction of the entrance, how to determine the time interval of adjacent images, how to determine nonstationary areas formed by a moving object and calculated velocity and position information of a moving object based on the determined areas, how to control servo equipment to locate the moving object at the center of an image frame, and how to properly adjust time interval(${\Delta}$t) to track an object taking variable speed.
Journal of the Korea Institute of Information and Communication Engineering
/
v.19
no.6
/
pp.1477-1484
/
2015
This paper proposes a robust method for object tracking based on Kalman filters algorithm and covariance matrix. As a feature of the object to be tracked, covariance matrix ensures the continuity of the moving target tracking in the image frames because the covariance is addressed spatial and statistical properties as well as the correlation properties of the features, despite the changes of the form and shape of the target. However, if object moves faster than operation time, real time tracking is difficult. In order to solve the problem, Kalman filters are used to estimate the area of the moving object and covariance matrices as a feature vector are compared with candidate regions within the estimated Kalman window. The results show that the tracking rate of 96.3% achieved using the proposed method.
In this paper, we propose a robust moving object tracking(MOT) method based on motion energy and prediction. MOT consists of two steps: moving object extraction step(MOES) and moving object tracking step(MOTS). For MOES, we use improved motion energy method. For MOTS, we predict the next location of moving object based on distance and direction information among previous instances, so that we can reduce the search space for correspondence. We apply the method to both synthetic and real world sequences and find that the method works well even in the presence of occlusion and disocclusion.
In this paper, we propose an efficient multi-object recognition and tracking scheme based on interest points of objects and their feature descriptors. To do that, we first define a set of object types of interest and collect their sample images. For sample images, we detect interest points and construct their feature descriptors using SURF. Next, we perform a statistical analysis of the local features to select representative points among them. Intuitively, the representative points of an object are the interest points that best characterize the object. in addition, we make the movement vectors of the interest points based on matching between their SURF descriptors and track the object using these vectors. Since our scheme treats all the objects independently, it can recognize and track multiple objects simultaneously. Through the experiments, we show that our proposed scheme can achieve reasonable performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.