• Title/Summary/Keyword: real time object tracking

Search Result 422, Processing Time 0.033 seconds

A Histogram-based Object Tracking for Mobile Platform (모바일 플랫폼을 위한 히스토그램 기반 객체추적)

  • Ko, Jae-Pil;Ahn, Jung-Ho;Lee, Il-Young;Kim, Sung-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.8
    • /
    • pp.986-995
    • /
    • 2012
  • In this paper we propose a real-time moving object tracking method on a smart phone camera. By considering the limit of non-learning approach on low-performance platforms, we use the sliding-window detection technique based on histogram features. We solve the problem of the time-consuming histogram computation on each sub-window by adapting the integral histogram. For additional speed and tracking performance, we propose a new adaptive bin method. From the experiments on our dataset, we achieved high speed performance demonstrating 34~63 frames per second.

Real-Time Detection of Moving Objects Using the Snake Algorithm (Snake 알고리즘을 이용한 실시간 이동물체 검출)

  • Yoon, Jong-Hoo;Chung, Ki-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.925-926
    • /
    • 2008
  • This paper presents an object tracking method using motion vectors generated in the MPEG4 encoding process and the snake algorithm for active contours. This paper shows the possibility of realtime object tracking during MPEG4 encoding process in a conventional surveillance system. The experiments is performed on a PC platform to prove the effectiveness of the method.

  • PDF

Viewpoint Invariant Person Re-Identification for Global Multi-Object Tracking with Non-Overlapping Cameras

  • Gwak, Jeonghwan;Park, Geunpyo;Jeon, Moongu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.2075-2092
    • /
    • 2017
  • Person re-identification is to match pedestrians observed from non-overlapping camera views. It has important applications in video surveillance such as person retrieval, person tracking, and activity analysis. However, it is a very challenging problem due to illumination, pose and viewpoint variations between non-overlapping camera views. In this work, we propose a viewpoint invariant method for matching pedestrian images using orientation of pedestrian. First, the proposed method divides a pedestrian image into patches and assigns angle to a patch using the orientation of the pedestrian under the assumption that a person body has the cylindrical shape. The difference between angles are then used to compute the similarity between patches. We applied the proposed method to real-time global multi-object tracking across multiple disjoint cameras with non-overlapping field of views. Re-identification algorithm makes global trajectories by connecting local trajectories obtained by different local trackers. The effectiveness of the viewpoint invariant method for person re-identification was validated on the VIPeR dataset. In addition, we demonstrated the effectiveness of the proposed approach for the inter-camera multiple object tracking on the MCT dataset with ground truth data for local tracking.

Real-Time Face Tracking System using Adaptive Face Detector and Kalman Filter (적응적 얼굴 검출기와 칼만 필터를 이용한 실시간 얼굴 추적 시스템)

  • Kim, Jong-Ho;Kim, Sang-Kyoon;Shin, Bum-Joo
    • Journal of Information Technology Services
    • /
    • v.6 no.3
    • /
    • pp.241-249
    • /
    • 2007
  • This paper describes a real-time face tracking system using effective detector and Kalman filter. In the proposed system, an image is separated into a background and an object using a real-time updated face color for effective face detection. The face features are extracted using the five types of simple Haar-like features. The extracted features are reinterpreted using Principal Component Analysis (PCA), and interpreted principal components are used for Support Vector Machine (SVM) that classifies the faces and non-faces. The moving face is traced with Kalman filter, which uses the static information of the detected faces and the dynamic information of changes between previous and current frames. The proposed system sets up an initial skin color and updates a region of a skin color through a moving skin color in a real time. It is possible to remove a background which has a similar color with a skin through updating a skin color in a real time. Also, as reducing a potential-face region using a skin color, the performance is increased up to 50% when comparing to the case of extracting features from a whole region.

A neural network based real-time robot tracking controller using position sensitive detectors (신경회로망과 위치 검출장치를 사용한 로보트 추적 제어기의 구현)

  • 박형권;오세영;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.660-665
    • /
    • 1993
  • Neural networks are used in the framework of sensorbased tracking control of robot manipulators. They learn by practice movements the relationship between PSD ( an analog Position Sensitive Detector) sensor readings for target positions and the joint commands to reach them. Using this configuration, the system can track or follow a moving or stationary object in real time. Furthermore, an efficient neural network architecture has been developed for real time learning. This network uses multiple sets of simple backpropagation networks one of which is selected according to which division (corresponding to a cluster of the self-organizing feature map) in data space the current input data belongs to. This lends itself to a very fast training and processing implementation required for real time control.

  • PDF

A Mobile Object Tracking Scheme by Wired/wireless Integrated Street Lights with RFID

  • Cha, Mang Kyu;Kim, Jung Ok;Lee, Won Hee;Yu, Ki Yun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.2
    • /
    • pp.25-35
    • /
    • 2016
  • Since a sophisticated location determination technology (LDT) is necessary for accurate positioning in urban area environments, numerous studies related to the LDT using the RFID (Radio Frequency IDentification) technology have been implemented for real-time positioning and data transferring. However, there are still lots of unsolved questions especially regarding what to use as base stations and what are corresponding results under the intrinsic complexity of alignment and configuration of components used for the RFID positioning. This study proposes the street light fixtures as base stations where the RFID receivers will be embedded for the mobile tracking scheme. As street light fixtures are usually installed at a certain distance interval, they can be used as base stations for the RFID receiver installation. Using the principle of the single row triangle network, the RFID receiver organization is determined based on the experiments such as recognition distance measurement and tag position accuracy estimation at inside and outside of the single row triangle network. The results verify that the mobile tracking scheme which uses RFID-embedded street light fixtures, suggested and configured in this study, is effective for the real-time outdoor positioning.

Real-Time Tracking of Moving Object by Adaptive Search in Spatial-temporal Spaces (시공간 적응탐색에 의한 실시간 이동물체 추적)

  • Kim, Gye-Young;Choi, Hyung-Ill
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.11
    • /
    • pp.63-77
    • /
    • 1994
  • This paper describes the real-time system which, through analyzing a sequence of images, can extract motional information on a moving object and can contol servo equipment to always locate the moving object at the center of an image frame. An image is a vast amount of two-dimensional signal, so it takes a lot of time to analyze the whole quantity of a given image. Especially, the time needed to load pixels from a memory to processor increase exponentially as the size of an image increases. To solve such a problem and track a moving object in real-time, this paper addresses how to selectively search the spatial and time domain. Based on the selective search of spatial and time domain, this paper suggests various types of techniques which are essential in implementing a real-time tracking system. That is, this paper describes how to detect an entrance of a moving object in the field of view of a camera and the direction of the entrance, how to determine the time interval of adjacent images, how to determine nonstationary areas formed by a moving object and calculated velocity and position information of a moving object based on the determined areas, how to control servo equipment to locate the moving object at the center of an image frame, and how to properly adjust time interval(${\Delta}$t) to track an object taking variable speed.

  • PDF

A Fast Moving Object Tracking Method by the Combination of Covariance Matrix and Kalman Filter Algorithm (공분산 행렬과 칼만 필터를 결합한 고속 이동 물체 추적 방법)

  • Lee, Geum-boon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1477-1484
    • /
    • 2015
  • This paper proposes a robust method for object tracking based on Kalman filters algorithm and covariance matrix. As a feature of the object to be tracked, covariance matrix ensures the continuity of the moving target tracking in the image frames because the covariance is addressed spatial and statistical properties as well as the correlation properties of the features, despite the changes of the form and shape of the target. However, if object moves faster than operation time, real time tracking is difficult. In order to solve the problem, Kalman filters are used to estimate the area of the moving object and covariance matrices as a feature vector are compared with candidate regions within the estimated Kalman window. The results show that the tracking rate of 96.3% achieved using the proposed method.

Real-Time Tracking of Moving Objects Based on Motion Energy and Prediction (모션에너지와 예측을 이용한 실시간 이동물체 추적)

  • Park, Chul-Hong;Kwon, Young-Tak;Soh, Young-Sung
    • Journal of Advanced Navigation Technology
    • /
    • v.2 no.2
    • /
    • pp.107-115
    • /
    • 1998
  • In this paper, we propose a robust moving object tracking(MOT) method based on motion energy and prediction. MOT consists of two steps: moving object extraction step(MOES) and moving object tracking step(MOTS). For MOES, we use improved motion energy method. For MOTS, we predict the next location of moving object based on distance and direction information among previous instances, so that we can reduce the search space for correspondence. We apply the method to both synthetic and real world sequences and find that the method works well even in the presence of occlusion and disocclusion.

  • PDF

Real-time Multi-Objects Recognition and Tracking Scheme (실시간 다중 객체 인식 및 추적 기법)

  • Kim, Dae-Hoon;Rho, Seung-Min;Hwang, Een-Jun
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.2
    • /
    • pp.386-393
    • /
    • 2012
  • In this paper, we propose an efficient multi-object recognition and tracking scheme based on interest points of objects and their feature descriptors. To do that, we first define a set of object types of interest and collect their sample images. For sample images, we detect interest points and construct their feature descriptors using SURF. Next, we perform a statistical analysis of the local features to select representative points among them. Intuitively, the representative points of an object are the interest points that best characterize the object. in addition, we make the movement vectors of the interest points based on matching between their SURF descriptors and track the object using these vectors. Since our scheme treats all the objects independently, it can recognize and track multiple objects simultaneously. Through the experiments, we show that our proposed scheme can achieve reasonable performance.