• Title/Summary/Keyword: real time identification

Search Result 806, Processing Time 0.032 seconds

Real Time Implementittion of Time Varying Nonstationary Signal Identifier and Its Application to Muscle Fatigue Monitoring (비정상 시변 신호 인식기의 실시간 구현 및 근피로도 측정에의 응용)

  • Lee, Jin;Lee, Young-Seock;Kim, Sung-Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.3
    • /
    • pp.317-324
    • /
    • 1995
  • A need exists for the accurate identification of time series models having time varying parameters, as is important in the case of real time identification of nonstationary EMG signal. Thls paper describes real time identification and muscle fatigue monitoring method of nonstationary EMG signal. The method is composed of the efficient identifier which estimates the autoregressive parameters of nonstationary EMG signal model, and its real time implementation by using T805 parallel processing computer. The method is verified through experiment with real EMG signals which are obtained from surface electrode. As a result, the proposed method provides a new approach for real time Implementation of muscle fatigue monitoring and the execution time is 0.894ms/sample for 1024Hz EMG signal.

  • PDF

Real-coded genetic algorithm for identification of time-delay process

  • Shin, Gang-Wook;Lee, Tae-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1645-1650
    • /
    • 2005
  • FOPDT(First-Order Plus Dead-Time) and SOPDT(Second-Order Plus Dead-Time) process, which are used as the most useful process in industry, are difficult about process identification because of the long dead-time problem and the model mismatch problem. Thus, the accuracy of process identification is the most important problem in FOPDT and SOPDT process control. In this paper, we proposed the real-coded genetic algorithm for identification of FOPDT and SOPDT processes. The proposed method using real-coding genetic algorithm shows better performance characteristic comparing with the existing an area-based identification method and a directed identification method that use step-test responses. The proposed strategy obtained useful result through a number of simulation examples.

  • PDF

Genetic Algorithm for Identification of Time Delay Systems from Step Responses

  • Shin, Gang-Wook;Song, Young-Joo;Lee, Tae-Bong;Choi, Hong-Kyoo
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.1
    • /
    • pp.79-85
    • /
    • 2007
  • In this paper, a real-coded genetic algorithm is proposed for identification of time delay systems from step responses. FOPDT(First-Order Plus Dead-Time) and SOPDT(Second-Order Plus Dead-Time) systems, which are the most useful processes in this field, but are difficult for system identification because of a long dead-time problem and a model mismatch problem. Genetic algorithms have been successfully applied to a variety of complex optimization problems where other techniques have often failed. Thus, the modified crossover operator of a real-code genetic algorithm is proposed to effectively search the system parameters. The proposed method, using a real-coding genetic algorithm, shows better performance characteristics when compared to the usual area-based identification method and the directed identification method that uses step responses.

Rapid Identification of Vibrio vulnificus in Seawater by Real-Time Quantitative TaqMan PCR

  • Wang, Hye-Young;Lee, Geon-Hyoung
    • Journal of Microbiology
    • /
    • v.41 no.4
    • /
    • pp.320-326
    • /
    • 2003
  • In order to identify Vibrio vulnificus in the Yellow Sea near Gunsan, Korea during the early and late summers, the efficiency of the real-time quantitative TaqMan PCR was compared to the efficiency of the conventional PCR and Biolog identification system^TM. Primers and a probe were designed from the hemolysin/cytolysin gene sequence of V. vulnificus strains. The number of positive detections by real-time quantitative TaqMan PCR, conventional PCR, and the Biolog identification system from seawater were 53 (36.8%), 36 (25%), and 10 strains (6.9%), respectively, among 144 samples collected from Yellow Sea near Gunsan, Korea. Thus, the detection method of the real-time quantitative TaqMan PCR assay was more effective in terms of accuracy than that of the conventional PCR and Biolog system. Therefore, our results showed that the real-time TaqMan probe and the primer set developed in this study can be applied successfully as a rapid screening tool for the detection of V. vulnificus.

A Hardware Implementation for Real-Time Fingerprint Identification (실시간 지문식별을 위한 하드웨어 구현)

  • Kim Kichul;Kim Min;Chung Yongwha;Pan Sung Bum
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.14 no.6
    • /
    • pp.79-89
    • /
    • 2004
  • Fingerprint identification consists of user enrollment phase storing user's fingerprint in a database and user identification phase making a candidate list for a given fingerprint. straightforward approach to perform the user identification phase is to scan the entire database sequentially, and takes times for large-scale databases. In this paper, we develop a hardware design which can perform the user identification phase in real-time. Our design employs parallel processing techniques and has been implemented on a PCI-based platform containing an FPGA and SDRAMs. Based on the performance evaluation, our hardware implementation can provide a scalability and perform the fingerprint identification in real-time.

Novel Techniques for Real Time Computing Critical Clearing Time SIME-B and CCS-B

  • Dinh, Hung Nguyen;Nguyen, Minh Y.;Yoon, Yong Tae
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.197-205
    • /
    • 2013
  • Real time transient stability assessment mainly depends on real-time prediction. Unfortunately, conventional techniques based on offline analysis are too slow and unreliable in complex power systems. Hence, fast and reliable stability prediction methods and simple stability criterions must be developed for real time purposes. In this paper, two new methods for real time determining critical clearing time based on clustering identification are proposed. This article is covering three main sections: (i) clustering generators and recognizing critical group; (ii) replacing the multi-machine system by a two-machine dynamic equivalent and eventually, to a one-machine-infinite-bus system; (iii) presenting a new method to predict post-fault trajectory and two simple algorithms for calculating critical clearing time, respectively established upon two different transient stability criterions. The performance is expected to figure out critical clearing time within 100ms-150ms and with an acceptable accuracy.

A Maximum Power Control of IPMSM with Real-time Parameter Identification

  • Jun, Hyunwoo;Ahn, Hanwoong;Lee, Hyungwoo;Go, Sungchul;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.110-116
    • /
    • 2017
  • This paper proposed a new real-time parameter tracking algorithm. Unlike the convenience algorithms, the proposed real-time parameter tracking algorithm can estimate parameters through three-phase voltage and electric current without coordination transformation, and does not need information on magnetic flux. Therefore, it can estimate parameters regardless of the change according to operation point and cross-saturation effect. In addition, as the quasi-real-time parameter tracking technique can estimate parameters through the four fundamental arithmetic operations instead of complicated algorithms such as numerical value analysis technique and observer design, it can be applied to low-performance DSP. In this paper, a new real-time parameter tracking algorithm is derived from three phase equation. The validity and usefulness of the proposed inductance estimation technique is verified by simulation and experimental results.

User Identification Using Real Environmental Human Computer Interaction Behavior

  • Wu, Tong;Zheng, Kangfeng;Wu, Chunhua;Wang, Xiujuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.3055-3073
    • /
    • 2019
  • In this paper, a new user identification method is presented using real environmental human-computer-interaction (HCI) behavior data to improve method usability. User behavior data in this paper are collected continuously without setting experimental scenes such as text length, action number, etc. To illustrate the characteristics of real environmental HCI data, probability density distribution and performance of keyboard and mouse data are analyzed through the random sampling method and Support Vector Machine(SVM) algorithm. Based on the analysis of HCI behavior data in a real environment, the Multiple Kernel Learning (MKL) method is first used for user HCI behavior identification due to the heterogeneity of keyboard and mouse data. All possible kernel methods are compared to determine the MKL algorithm's parameters to ensure the robustness of the algorithm. Data analysis results show that keyboard data have a narrower range of probability density distribution than mouse data. Keyboard data have better performance with a 1-min time window, while that of mouse data is achieved with a 10-min time window. Finally, experiments using the MKL algorithm with three global polynomial kernels and ten local Gaussian kernels achieve a user identification accuracy of 83.03% in a real environmental HCI dataset, which demonstrates that the proposed method achieves an encouraging performance.

MALDI TOF MS for the identification of Salmonella spp. from swine (돼지유래 Salmonella속 균의 동정을 위한 MALDI TOF MS 활용)

  • Sohn, Jun Hyung;Jeon, Woo Jin;Lee, Young Mi;Kim, Seon Soo
    • Korean Journal of Veterinary Service
    • /
    • v.39 no.4
    • /
    • pp.247-251
    • /
    • 2016
  • Salmonella is one of the most common bacteria that causes heavy losses in swine industry and major causative pathogen of food poisoning in public health. Various methods for the identification of Salmonella such as Gram staining, agglutination test, enzyme-linked immunosorbent assay (ELISA), polymerase chain reaction (PCR) have been used. Several studies have demonstrated that Matrix Assisted Laser Desorption Ionization Time of Flight (MALDI TOF) Mass Spectrometry (MS) identification is an efficient and inexpensive method for the rapid and routine identification of isolated bacteria. In this study, MALDI TOF MS could provide rapid, accurate identification of Salmonella spp. from swine compared with end point PCR and real time PCR.

Adaptive identification of volterra kernel of nonlinear systems

  • Yeping, Sun;Kashiwagi, Hiroshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.476-479
    • /
    • 1995
  • A real time and adaptive method for obtaining Volterra kernels of a nonlinear system by use of pseudorandom M-sequences and correlation technique is proposed. The Volterra kernels are calculated real time and the obtained Volterra kernels becomes more accurate as time goes on. The simulation results show the effectiveness of this method for identifying time-varying nonlinear system.

  • PDF