• Title/Summary/Keyword: real road distance

Search Result 117, Processing Time 0.03 seconds

Self-localization from the panoramic views for autonomous mobile robots

  • Jo, Kang-Hyun;Kang, Hyun-Deok;Kim, Tae-Ho;Inhyuk Moon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.49.6-49
    • /
    • 2001
  • This paper describes a self-localization method for the mobile robot using panoramic view images. A panoramic view image has the information of location of the objects from the viewer robot and direction between the objects at a position. Among the sequence of panoramic view images, the target objects in the image like traffic signs, facade of a building, road signs, etc. locate in the real world so that robot´s position and direction deliver to localize from his view. With the previously captured panoramic images, the method calculates the distance and direction of the region of interest, corresponds the regions between the sequences, and identifies the location in the world. To obtain the region, vertical edge line segments

  • PDF

Moving Window Technique for Obstacle Detection Using Neural Networks (신경망을 사용한 장애물 검출을 위한 Moving Window 기법)

  • 주재율;회승욱;이장명
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.164-164
    • /
    • 2000
  • This paper proposes a moving window technique that extracts lanes and vehicles using the images captured by a CCD camera equipped inside an automobile in real time. For the purpose, first of all the optimal size of moving window is determined based upon speed of the vehicle, road curvature, and camera parameters. Within the moving windows that are dynamically changing, lanes and vehicles are extracted, and the vehicles within the driving lanes are classified as obstacles. Assuming highway driving, there are two sorts of image-objects within the driving lanes: one is ground mark to show the limit speed or some information for driving, and the other is the vehicle as an obstacle. Using characteristics of three-dimension objects, a neural network can be trained to distinguish the vehicle from ground mark. When it is recognized as an obstacle, the distance from the camera to the front vehicle can be calculated with the aids of database that keeps the models of automobiles on the highway. The correctness of this measurement is verified through the experiments comparing with the radar and laser sensor data.

  • PDF

A Vehicle Routing Problem Which Considers Traffic Situation by Service Time Zones (서비스 시간대별 교통상황을 고려한 차량경로문제)

  • Kim, Ki-Tae;Jeon, Geon-Wook
    • IE interfaces
    • /
    • v.22 no.4
    • /
    • pp.359-367
    • /
    • 2009
  • The vehicle travel time between the demand points in downtown area is greatly influenced by complex road condition and traffic situation that change real time to various external environments. Most of research in the vehicle routing problems compose vehicle routes only considering travel distance and average vehicle speed between the demand points, however did not consider dynamic external environments such as traffic situation by service time zones. A realistic vehicle routing problem which considers traffic situation of smooth, delaying, and stagnating by three service time zones such as going to work, afternoon, and going home was suggested in this study. A mathematical programming model was suggested and it gives an optimal solution when using ILOG CPLEX. A hybrid genetic algorithm was also suggested to chooses a vehicle route considering traffic situation to minimize the total travel time. By comparing the result considering the traffic situation, the suggested algorithm gives better solution than existing algorithms.

Maximum Braking Force Control Using Wheel Slip Controller and Optimal Target Slip Assignment Algorithm in Vehicles (휠 슬립 제어기 및 최적 슬립 결정 알고리즘을 이용한 차량의 최대 제동력 제어)

  • Hong Dae-Gun;Hwang In-Yong;SunWoo Myoung-Ho;Huh Kun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.3 s.246
    • /
    • pp.295-301
    • /
    • 2006
  • The wheel slip control systems are able to control the braking force more accurately and can be adapted to different vehicles more easily than conventional ABS systems. In order to achieve the superior braking performance through the wheel-slip control, real-time information such as the tire braking force at each wheel is required. In addition, the optimal target slip values need to be determined depending on the braking objectives such as minimum braking distance, stability enhancement, etc. In this paper, a robust wheel slip controller is developed based on the adaptive sliding mode control method and an optimal target slip assignment algorithm. An adaptive law is formulated to estimate the longitudinal braking force in real-time. The wheel slip controller is designed using the Lyapunov stability theory and considering the error bounds in estimating the braking force and the brake disk-pad friction coefficient. The target slip assignment algorithm is developed for the maximum braking force and searches the optimal target slip value based on the estimated braking force. The performance of the proposed wheel-slip control system is verified In simulations and demonstrates the effectiveness of the wheel slip control in various road conditions.

A Vision-Based Collision Warning System by Surrounding Vehicles Detection

  • Wu, Bing-Fei;Chen, Ying-Han;Kao, Chih-Chun;Li, Yen-Feng;Chen, Chao-Jung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.4
    • /
    • pp.1203-1222
    • /
    • 2012
  • To provide active notification and enhance drivers'awareness of their surroundings, a vision-based collision warning system that detects and monitors surrounding vehicles is proposed in this paper. The main objective is to prevent possible vehicle collisions by monitoring the status of surrounding vehicles, including the distance to the other vehicles in front, behind, to the left and to the right sides. In addition, the proposed system collects and integrates this information to provide advisory warnings to drivers. To offer the correct notification, an algorithm based on features of edge and morphology to detect vehicles is also presented. The proposed system has been implemented in embedded systems and evaluated on real roads in various lighting and weather conditions. The experimental results indicate that the vehicle detection ratios were higher than 97% in the daytime, and appropriate for real road applications.

MAXIMUM BRAKING FORCE CONTROL UTILIZING THE ESTIMATED BRAKING FORCE

  • Hong, D.;Hwang, I.;SunWoo, M.;Huh, K.
    • International Journal of Automotive Technology
    • /
    • v.8 no.2
    • /
    • pp.211-217
    • /
    • 2007
  • The wheel slip control systems are able to control the braking force more accurately and can be adapted to different vehicles more easily than conventional ABS (Anti-lock Brake System) systems. In realizing the wheel slip control systems, real-time information such as the tire braking force at each wheel is required. In addition, the optimal target slip values need to be determined depending on the braking objectives such as minimum braking distance and stability enhancement. In this paper, a robust wheel slip controller is developed based on the adaptive sliding mode control method and an optimal target slip assignment algorithm is proposed for maximizing the braking force. An adaptive law is formulated to estimate the braking force in real-time. The wheel slip controller is designed based on the Lyapunov stability theory considering the error bounds in estimating the braking force and the brake disk-pad friction coefficient. The target slip assignment algorithm searches for the optimal target slip value based on the estimated braking force. The performance of the proposed wheel slip control system is verified in HILS (Hardware-In-the-Loop Simulator) experiments and demonstrates the effectiveness of the wheel slip control in various road conditions.

EMOS: Enhanced moving object detection and classification via sensor fusion and noise filtering

  • Dongjin Lee;Seung-Jun Han;Kyoung-Wook Min;Jungdan Choi;Cheong Hee Park
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.847-861
    • /
    • 2023
  • Dynamic object detection is essential for ensuring safe and reliable autonomous driving. Recently, light detection and ranging (LiDAR)-based object detection has been introduced and shown excellent performance on various benchmarks. Although LiDAR sensors have excellent accuracy in estimating distance, they lack texture or color information and have a lower resolution than conventional cameras. In addition, performance degradation occurs when a LiDAR-based object detection model is applied to different driving environments or when sensors from different LiDAR manufacturers are utilized owing to the domain gap phenomenon. To address these issues, a sensor-fusion-based object detection and classification method is proposed. The proposed method operates in real time, making it suitable for integration into autonomous vehicles. It performs well on our custom dataset and on publicly available datasets, demonstrating its effectiveness in real-world road environments. In addition, we will make available a novel three-dimensional moving object detection dataset called ETRI 3D MOD.

A Study on Acceleration of Transient Brake Section and Skidding Section (불완전 제동구간과 활주구간의 감속도 변화에 대한 연구)

  • Kim, Kil Bae;Jung, Woo Teak;Ryu, Tae Sun;Oh, Young Tae
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.5
    • /
    • pp.83-90
    • /
    • 2012
  • Driver ordinarily takes sudden braking when urgent situation is developed or when the vehicle is involved in an unexpected accident. Therefore, the most common trace at a traffic accident scene is skid mark. Currently, in investigating traffic accident, overspeed is determined by the length of skid mark. However, in order to identify accurate cause of accident, estimation of pre-braking speed which takes into account speed reduction during transient time should be considered as a requirement. In a recent study, several ways to estimate pre-braking speed were suggested, but none considered to differentiate the decelerating transient brake section and skidding section. This study analyzed trends of decelerating transient brake section and skidding section by real braking test.

Characteristics of Real-road Driving NOx Emissions from Korean Light-duty Vehicles regarding Driving Routes (주행경로에 따른 국내 소형자동차 실제도로 주행 질소산화물 배출량 특성)

  • Oak, Seonil;Eom, Myoungdo;Lee, Jongtae;Park, Junhong;Kim, Jichul;Chon, Mun Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.1
    • /
    • pp.130-138
    • /
    • 2015
  • Despite of recently strengthened vehicle emission regulations, NOx emissions are not decreased in urban areas because of discrepancies between certification emission test modes and real driving conditions. Thus, researches on RDE-LDV (Real-driving Emission-Light-duty Vehicle) have been conducted actively using PEMS (Portable Emissions Measurement Systems). In the present study, NOx emissions were measured for 5 Korean light duty vehicles for real driving conditions including city, combined, highway, and up-downhill test route. Emission characteristics were analyzed for averaged NOx emissions per unit driving distance of each driving test routes. Furthermore, MAW (Moving Average Window) method based on $CO_2$ emissions from WLTC, which will be supported for EU regulations, was utilized. It was revealed that DRs (deviation ratios) for diesel vehicles (i.e., 5.1 ~ 8.4) were greater than gasoline vehicles (less than 0.15). Especially DR of diesel vehicle for up-downhill test route was 8.4, which indicates severe NOx emissions.

A Study on the Relation between the Single-track Subway and Housing Price - Focused on Row and Multi-family House around Eungam Loop Line of Seoul Subway Line 6 - (단선 일방통행 방식의 지하철과 주택가격의 관계 분석 - 서울 지하철 6호선 응암순환선 구간 주변 연립다세대를 중심으로 -)

  • So, Soung-Kue;Oh, Sae-Joon;Lee, Kyu-Tai
    • Journal of Cadastre & Land InformatiX
    • /
    • v.49 no.2
    • /
    • pp.39-56
    • /
    • 2019
  • In this study, we analyzed the effect of the Eungam Loop Line of Seoul Subway Line 6 on the sale price of adjacent row and multi-family houses on the accessibility and structural characteristics of subway stations. This study empirically analyzed a total of 17,938 cases from 2006 to 2017 based on data on the sale price of row and multi-family houses. In summary, the results of this study using the Hedonic Price Model are as follows. First, this study confirms that the Eungam Loop Line characteristics have a positive effect on the sale price as it is adjacent to the subway station. It is noteworthy that the sale price of 100-200m segment has a positive effect, and the sale price of Bulgwang station, which has excellent mobility and connectivity with CBD, YBD and GBD, has a positive effect. Second, this study shows the locational characteristics such as distance to bus stop, distance to mart, and distance to school have influence on the sale price. Third, this study finds the land characteristics such as land area, land shape, land facing, and road width, have significant effects on the sale price. Fourth, this study discovers the sale price is also is also affected by building and floor characteristics such as the type of housing, building area, the number of households, building age, elevator, and floor level.