• Title/Summary/Keyword: real quadratic field

Search Result 26, Processing Time 0.022 seconds

The Optimal Mean-Variance Portfolio Formulation by Mathematical Planning (Mean-Variance 수리 계획을 이용한 최적 포트폴리오 투자안 도출)

  • Kim, Tai-Young
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.4
    • /
    • pp.63-71
    • /
    • 2009
  • The traditional portfolio optimization problem is to find an investment plan for securities with reasonable trade-off between the rate of return and the risk. The seminal work in this field is the mean-variance model by Markowitz, which is a quadratic programming problem. Since it is now computationally practical to solve the model, a number of alternative models to overcome this complexity have been proposed. In this paper, among the alternatives, we focus on the Mean Absolute Deviation (MAD) model. More specifically, we developed an algorithm to obtain an optimal portfolio from the MAD model. We showed mathematically that the algorithm can solve the problem to optimality. We tested it using the real data from the Korean Stock Market. The results coincide with our expectation that the method can solve a variety of problems in a reasonable computational time.

Bridge Safety Evaluation Based on the System Identification (구조동정법(構造同定法)에 의한 교량(橋梁)의 안전성(安全性) 평가(評價))

  • Kim, Kee-Dae;Lee, Sang-Wha
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.2
    • /
    • pp.162-169
    • /
    • 1998
  • This paper presents the application of system identification approaches for the safety assessment of RC-T type bridge based on the result of field test. For these problems, the moment of inertia of cross-sectional area and the natural frequency of bridge were used as structural parameters, the SAP90 program for the structural analysis and the SLP method for the minimum error. As a result, it is found that the proposed algorithm for this study appears applicable to real structures with reasonable complexity. It is shown that the introduction of approximate quadratic equations is more realistic and timesaving than the common methods.

  • PDF

Estimation of the soil liquefaction potential through the Krill Herd algorithm

  • Yetis Bulent Sonmezer;Ersin Korkmaz
    • Geomechanics and Engineering
    • /
    • v.33 no.5
    • /
    • pp.487-506
    • /
    • 2023
  • Looking from the past to the present, the earthquakes can be said to be type of disaster with most casualties among natural disasters. Soil liquefaction, which occurs under repeated loads such as earthquakes, plays a major role in these casualties. In this study, analytical equation models were developed to predict the probability of occurrence of soil liquefaction. In this context, the parameters effective in liquefaction were determined out of 170 data sets taken from the real field conditions of past earthquakes, using WEKA decision tree. Linear, Exponential, Power and Quadratic models have been developed based on the identified earthquake and ground parameters using Krill Herd algorithm. The Exponential model, among the models including the magnitude of the earthquake, fine grain ratio, effective stress, standard penetration test impact number and maximum ground acceleration parameters, gave the most successful results in predicting the fields with and without the occurrence of liquefaction. This proposed model enables the researchers to predict the liquefaction potential of the soil in advance according to different earthquake scenarios. In this context, measures can be realized in regions with the high potential of liquefaction and these measures can significantly reduce the casualties in the event of a new earthquake.

SHM-based probabilistic representation of wind properties: statistical analysis and bivariate modeling

  • Ye, X.W.;Yuan, L.;Xi, P.S.;Liu, H.
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.591-600
    • /
    • 2018
  • The probabilistic characterization of wind field characteristics is a significant task for fatigue reliability assessment of long-span railway bridges in wind-prone regions. In consideration of the effect of wind direction, the stochastic properties of wind field should be represented by a bivariate statistical model of wind speed and direction. This paper presents the construction of the bivariate model of wind speed and direction at the site of a railway arch bridge by use of the long-term structural health monitoring (SHM) data. The wind characteristics are derived by analyzing the real-time wind monitoring data, such as the mean wind speed and direction, turbulence intensity, turbulence integral scale, and power spectral density. A sequential quadratic programming (SQP) algorithm-based finite mixture modeling method is proposed to formulate the joint distribution model of wind speed and direction. For the probability density function (PDF) of wind speed, a double-parameter Weibull distribution function is utilized, and a von Mises distribution function is applied to represent the PDF of wind direction. The SQP algorithm with multi-start points is used to estimate the parameters in the bivariate model, namely Weibull-von Mises mixture model. One-year wind monitoring data are selected to validate the effectiveness of the proposed modeling method. The optimal model is jointly evaluated by the Bayesian information criterion (BIC) and coefficient of determination, $R^2$. The obtained results indicate that the proposed SQP algorithm-based finite mixture modeling method can effectively establish the bivariate model of wind speed and direction. The established bivariate model of wind speed and direction will facilitate the wind-induced fatigue reliability assessment of long-span bridges.

Analytical and higher order finite element hybrid approach for an efficient simulation of ultrasonic guided waves I: 2D-analysis

  • Vivar-Perez, Juan M.;Duczek, Sascha;Gabbert, Ulrich
    • Smart Structures and Systems
    • /
    • v.13 no.4
    • /
    • pp.587-614
    • /
    • 2014
  • In recent years the interest in online monitoring of lightweight structures with ultrasonic guided waves is steadily growing. Especially the aircraft industry is a driving force in the development of structural health monitoring (SHM) systems. In order to optimally design SHM systems powerful and efficient numerical simulation tools to predict the behaviour of ultrasonic elastic waves in thin-walled structures are required. It has been shown that in real industrial applications, such as airplane wings or fuselages, conventional linear and quadratic pure displacement finite elements commonly used to model ultrasonic elastic waves quickly reach their limits. The required mesh density, to obtain good quality solutions, results in enormous computational costs when solving the wave propagation problem in the time domain. To resolve this problem different possibilities are available. Analytical methods and higher order finite element method approaches (HO-FEM), like p-FEM, spectral elements, spectral analysis and isogeometric analysis, are among them. Although analytical approaches offer fast and accurate results, they are limited to rather simple geometries. On the other hand, the application of higher order finite element schemes is a computationally demanding task. The drawbacks of both methods can be circumvented if regions of complex geometry are modelled using a HO-FEM approach while the response of the remaining structure is computed utilizing an analytical approach. The objective of the paper is to present an efficient method to couple different HO-FEM schemes with an analytical description of an undisturbed region. Using this hybrid formulation the numerical effort can be drastically reduced. The functionality of the proposed scheme is demonstrated by studying the propagation of ultrasonic guided waves in plates, excited by a piezoelectric patch actuator. The actuator is modelled utilizing higher order coupled field finite elements, whereas the homogenous, isotropic plate is described analytically. The results of this "semi-analytical" approach highlight the opportunities to reduce the numerical effort if closed-form solutions are partially available.

Calibration of Car-Following Models Using a Dual Genetic Algorithm with Central Composite Design (중심합성계획법 기반 이중유전자알고리즘을 활용한 차량추종모형 정산방법론 개발)

  • Bae, Bumjoon;Lim, Hyeonsup;So, Jaehyun (Jason)
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.2
    • /
    • pp.29-43
    • /
    • 2019
  • The calibration of microscopic traffic simulation models has received much attention in the simulation field. Although no standard has been established for it, a genetic algorithm (GA) has been widely employed in recent literature because of its high efficiency to find solutions in such optimization problems. However, the performance still falls short in simulation analyses to support fast decision making. This paper proposes a new calibration procedure using a dual GA and central composite design (CCD) in order to improve the efficiency. The calibration exercise goes through three major sequential steps: (1) experimental design using CCD for a quadratic response surface model (RSM) estimation, (2) 1st GA procedure using the RSM with CCD to find a near-optimal initial population for a next step, and (3) 2nd GA procedure to find a final solution. The proposed method was applied in calibrating the Gipps car-following model with respect to maximizing the likelihood of a spacing distribution between a lead and following vehicle. In order to evaluate the performance of the proposed method, a conventional calibration approach using a single GA was compared under both simulated and real vehicle trajectory data. It was found that the proposed approach enhances the optimization speed by starting to search from an initial population that is closer to the optimum than that of the other approach. This result implies the proposed approach has benefits for a large-scale traffic network simulation analysis. This method can be extended to other optimization tasks using GA in transportation studies.