• Title/Summary/Keyword: real ear

Search Result 55, Processing Time 0.022 seconds

Individual Fit Testing of Hearing Protection Devices Based on Microphone in Real Ear

  • Biabani, Azam;Aliabadi, Mohsen;Golmohammadi, Rostam;Farhadian, Maryam
    • Safety and Health at Work
    • /
    • v.8 no.4
    • /
    • pp.364-370
    • /
    • 2017
  • Background: Labeled noise reduction (NR) data presented by manufacturers are considered one of the main challenging issues for occupational experts in employing hearing protection devices (HPDs). This study aimed to determine the actual NR data of typical HPDs using the objective fit testing method with a microphone in real ear (MIRE) method. Methods: Five available commercially earmuff protectors were investigated in 30 workers exposed to reference noise source according to the standard method, ISO 11904-1. Personal attenuation rating (PAR) of the earmuffs was measured based on the MIRE method using a noise dosimeter (SVANTEK, model SV102). Results: The results showed that means of PAR of the earmuffs are from 49% to 86% of the nominal NR rating. The PAR values of earmuffs when a typical eyewear was worn differed statistically (p < 0.05). It is revealed that a typical safety eyewear can reduce the mean of the PAR value by approximately 2.5 dB. The results also showed that measurements based on the MIRE method resulted in low variability. The variability in NR values between individuals, within individuals, and within earmuffs was not the statistically significant (p > 0.05). Conclusion: This study could provide local individual fit data. Ergonomic aspects of the earmuffs and different levels of users experience and awareness can be considered the main factors affecting individual fitting compared with the laboratory condition for acquiring the labeled NR data. Based on the obtained fit testing results, the field application of MIRE can be employed for complementary studies in real workstations while workers perform their regular work duties.

Ginsenoside Rg3 attenuates skin disorders via down-regulation of MDM2/HIF1α signaling pathway

  • Han, Na-Ra;Ko, Seong-Gyu;Moon, Phil-Dong;Park, Hi-Joon
    • Journal of Ginseng Research
    • /
    • v.45 no.5
    • /
    • pp.610-616
    • /
    • 2021
  • Background: Thymic stromal lymphopoietin (TSLP) acts as a master switch for inflammatory responses. Ginsenoside Rg3 (Rg3) which is an active ingredient of Panax ginseng Meyer (Araliaceae) is known to possess various therapeutic effects. However, a modulatory effect of Rg3 on TSLP expression in the inflammatory responses remains poorly understood. Methods: We investigated antiinflammatory effects of Rg3 on an in vitro model using HMC-1 cells stimulated by PMA plus calcium ionophore (PMACI), as well as an in vivo model using PMA-induced mouse ear edema. TSLP and vascular endothelial growth factor (VEGF) levels were detected using enzyme-linked immunosorbent assay or real-time PCR analysis. Murine double minute 2 (MDM2) and hypoxia-inducible factor 1α (HIF1α) expression levels were detected using Western blot analysis. Results: Rg3 treatment restrained the production and mRNA expression levels of TSLP and VEGF in activated HMC-1 cells. Rg3 down-regulated the MDM2 expression level increased by PMACI stimulation. The HIF1α expression level was also reduced by Rg3 in activated HMC-1 cells. In addition, Rg3-administered mice showed the decreased redness and ear thickness in PMA-irritated ear edema. Rg3 inhibited the TSLP and VEGF levels in the serum and ear tissue homogenate. Moreover, the MDM2 and HIF1α expression levels in the ear tissue homogenate were suppressed by Rg3. Conclusion: Taken together, the current study identifies new mechanistic evidence about MDM2/HIF1α pathway in the antiinflammatory effect of Rg3, providing a new effective therapeutic strategy for the treatment of skin inflammatory diseases.

Study on the Body Temperature Measuring Time and Accuracy and Reliability of Tympanic Thermometer (체온측정시간 및 고막체온계의 정확도와 신뢰도에 관한 연구)

  • Jeong Ihn-Sook;Yoo Eun-Jung
    • Journal of Korean Academy of Fundamentals of Nursing
    • /
    • v.4 no.1
    • /
    • pp.19-30
    • /
    • 1997
  • This study was to investigate the method for shortening the body temperature (BT) because it takes a long time and is impractical to measure axillary or oral BT with mercury thermometer, The first approach was to identify BT change according to the measuring time and determine the clinically not statistically avaiable and optimal BT measuring time. The second was to test the accuracy of tympanic thermometer. It can measure BT within a few seconds, so if it is approved accurate, we can save BT measuring time by substitute tympanic thermometer for mercury thermometer. This study was conducted from 1, to 30 June, 1996. The subjects were 12men students of medicalk college and 29 women students of nursing school. The results were as follows ; 1) The 3, 5, 7, 9, 11, 13minute-measured axillary BT and 3, 5, 7, minute-measured BT showed somewhat linear relationship with time. It was difficult to find the optimum measuring time which were clinically significant. 2) For axillary tempeiature, the measuring time which were not statistically different was 11 and 13minute. But the real BT difference between 3 and 13minute, or between 5 and 13minute were very small and was within the range of daily variation. 3) For oral temperature, there was no intervals which showed the statistically insignificant. But like as axillary temperature, the difference between 3 and 7, or 5 and 7 minute were trivial by $0.3^{\circ}C$ and by $0.1^{\circ}C$ respectively. 4) Tympanic temperatures were lower than oral BTs which were measured with mercury thermometer by $0.26^{\circ}C$ (with ear tug) and $0.15^{\circ}C$(without ear tug). 5) The reliability of repeated measure tympanic temperature was better than without ear tug. With above results, we can't determine the optimal and cilically significant oral and axillary measuring time using mercury thermometer. However, because the real differences between measuring times were very small, so we recommend further study for the aged, the infants and the febrile patients. And we can't sure the accuracy of tympanic temperature but the reliability was better with ear tug than without ear tug.

  • PDF

Experimental Study on the Characteristics of Pressure Variation of KTX Passing Through Tunnel

  • Nam, Seong-Won
    • International Journal of Railway
    • /
    • v.1 no.4
    • /
    • pp.169-174
    • /
    • 2008
  • Experimental study has been conducted to clarify the internal and external pressure variation characteristics for KTX(Korea Train eXpress) passing through tunnel. Abrupt pressure variation gives rise to the ear-discomfort for passenger and fatigue for car body. In this study, the internal and external pressure variation are measured by using KTX real train experiment and on-board portable data acquisition system in Gyeongbu high speed commercial line. The tunnels from 200 m to 4000 m in length are chosen for the investigation of tunnel length effects. From the results of experiment, the internal pressure variation rate for all the test tunnels is lower than the standard criteria of 200 Pa/s. And, the critical tunnel lengths for pressure wave pattern are classified into 7 groups by using the theoretical L-t diagram analysis.

  • PDF

EAR: Enhanced Augmented Reality System for Sports Entertainment Applications

  • Mahmood, Zahid;Ali, Tauseef;Muhammad, Nazeer;Bibi, Nargis;Shahzad, Imran;Azmat, Shoaib
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.6069-6091
    • /
    • 2017
  • Augmented Reality (AR) overlays virtual information on real world data, such as displaying useful information on videos/images of a scene. This paper presents an Enhanced AR (EAR) system that displays useful statistical players' information on captured images of a sports game. We focus on the situation where the input image is degraded by strong sunlight. Proposed EAR system consists of an image enhancement technique to improve the accuracy of subsequent player and face detection. The image enhancement is followed by player and face detection, face recognition, and players' statistics display. First, an algorithm based on multi-scale retinex is proposed for image enhancement. Then, to detect players' and faces', we use adaptive boosting and Haar features for feature extraction and classification. The player face recognition algorithm uses boosted linear discriminant analysis to select features and nearest neighbor classifier for classification. The system can be adjusted to work in different types of sports where the input is an image and the desired output is display of information nearby the recognized players. Simulations are carried out on 2096 different images that contain players in diverse conditions. Proposed EAR system demonstrates the great potential of computer vision based approaches to develop AR applications.

Experimental Verification of Implantable Middle Ear System using the Differential Electromagnetic Type Transducer (차동 전자 트랜스듀서를 이용한 이식형 인공중이 시스템의 실험적 검증)

  • 송병섭;이기찬;원철호;박세광;이상흔;조진호
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.217-225
    • /
    • 2002
  • The implantable middle ear(IME) system, which has good sound quality. superior sound intelligibility and wide frequency characteristics. can resolve the sound distortion and ringing effect by sound feedback at high gain operation those are the major problems of conventional hearing aid. In this paper, we have manufactured the IME system using differential electromagnetic transducer(DET) and verified the performance of the system by carrying out vibration and animal implanting experiment. The DET was manufactured using micro-machining technology and vibration experiment of the transducer was performed to inspect whether the transducer could vibrate in accordance with the applied sound signal or not. And the result of the loaded experiment using temporal bone sampled from cadaver showed that the transducer can drive the middle ear bone and transmit the signal to inner ear After the internal unit of IME system was implanted in a dog. the auditory brainstem response (ABR) test was carried out. The result of the test indicated the Proper behavior of the IME system in the living body From the results of the experiments, it is verified that the manufactured system ewll work well when it is applied to human and a basis of clinical experiment of IME system to real human hearing impaired was be arranged.

Temperature Detection and Monitoring System of Livestock Through Ear-Tag Based on IoT (IoT 기반의 이표를 통한 가축 온도 변화 감지 및 모니터링 시스템)

  • Park, Young-Soo;Park, Kyoung-Yong;Kim, Min-Sun;Park, Jun-Kyu;Kwon, Seong-Geun
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.3
    • /
    • pp.474-481
    • /
    • 2017
  • In Korea, foot-and-mouth disease has not been reported for several decades, but it began to develop again in 2000. For 2010~2011, when the worst occurred, 3.5 million animals were disposed of resulting in a loss of 2.8 trillion won. In order to prevent the harmful effects of foot-and-mouth disease, vaccination and housing management are being implemented. Despite these measures, foot-and-mouth disease is infected with air through the respiratory tract and accompanies fever after latency. Therefore, it is recognized that measuring and managing the body temperature of livestock at the early stage is the first step of managing this disease. In this paper, we propose a temperature monitoring system that can measure the body temperature by incorporating temperature sensor mounted in ear-tag of cattle and collect body temperature data of each individual cattle through BLE into the control server. The proposed body temperature monitoring system has various advantages such as easy installation without the help of livestock specialists and not damaging the organs of the livestock. So, it is possible to manage the abnormal symptom of cattle in real time and it is believed that the proposed monitoring system will revolutionize the prevention of foot-and-mouth disease.

An Adaptive Microphone Array with Linear Phase Response (선형 위상 특성을 갖는 적응 마이크로폰 어레이)

  • Kang, Hong-Gu;Youn, Dae-Hui;Cha, Il-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.11 no.3
    • /
    • pp.53-60
    • /
    • 1992
  • Many adaptive beamforming methods have been studied for interference cancellation and speech signal enhancement in telephone conference and auditorium. Main aspect of adaptive beamforming methods for speech signal processing is different from radar, sonar and seismic signal processing because desire output signal should be apt to the human ear. Considering that phase of speech is quite insensible to the human ear, Sondhi proposed a nonlinear constrained optimization technique whose constraint was on the magnitude transfer function from the source to the output. In real environment the phase response of the speech signal affects the human auditorium system. So it is desirable to design linear phase system. In this paper, linear phase beamformer is proposed and sample processing algorithm is also proposed for real time consideration Simulation results show that the proposed algorithm yields more consistent beam patterns and deep nulls to the noise direction than Sondhi's.

  • PDF

Applying MetaHuman Facial Animation with MediaPipe: An Alternative Solution to Live Link iPhone.

  • Balgum Song;Arminas Baronas
    • International journal of advanced smart convergence
    • /
    • v.13 no.3
    • /
    • pp.191-198
    • /
    • 2024
  • This paper presents an alternative solution for applying MetaHuman facial animations using MediaPipe, providing a versatile option to the Live Link iPhone system. Our approach involves capturing facial expressions with various camera devices, including webcams, laptop cameras, and Android phones, processing the data for landmark detection, and applying these landmarks in Unreal Engine Blueprint to animate MetaHuman characters in real-time. Techniques such as the Eye Aspect Ratio (EAR) for blink detection and the One Euro Filter for data smoothing ensure accurate and responsive animations. Experimental results demonstrate that our system provides a cost-effective and flexible alternative for iPhone non-users, enhancing the accessibility of advanced facial capture technology for applications in digital media and interactive environments. This research offers a practical and adaptable method for real-time facial animation, with future improvements aimed at integrating more sophisticated emotion detection features.

Quasi-Optimal Linear Recursive DOA Tracking of Moving Acoustic Source for Cognitive Robot Auditory System (인지로봇 청각시스템을 위한 의사최적 이동음원 도래각 추적 필터)

  • Han, Seul-Ki;Ra, Won-Sang;Whang, Ick-Ho;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.3
    • /
    • pp.211-217
    • /
    • 2011
  • This paper proposes a quasi-optimal linear DOA (Direction-of-Arrival) estimator which is necessary for the development of a real-time robot auditory system tracking moving acoustic source. It is well known that the use of conventional nonlinear filtering schemes may result in the severe performance degradation of DOA estimation and not be preferable for real-time implementation. These are mainly due to the inherent nonlinearity of the acoustic signal model used for DOA estimation. This motivates us to consider a new uncertain linear acoustic signal model based on the linear prediction relation of a noisy sinusoid. Using the suggested measurement model, it is shown that the resultant DOA estimation problem is cast into the NCRKF (Non-Conservative Robust Kalman Filtering) problem [12]. NCRKF-based DOA estimator provides reliable DOA estimates of a fast moving acoustic source in spite of using the noise-corrupted measurement matrix in the filter recursion and, as well, it is suitable for real-time implementation because of its linear recursive filter structure. The computational efficiency and DOA estimation performance of the proposed method are evaluated through the computer simulations.