• Title/Summary/Keyword: real condition study

Search Result 1,545, Processing Time 0.031 seconds

Determination of cable force based on the corrected numerical solution of cable vibration frequency equations

  • Dan, Danhui;Chen, Yanyang;Yan, Xingfei
    • Structural Engineering and Mechanics
    • /
    • v.50 no.1
    • /
    • pp.37-52
    • /
    • 2014
  • The accurate determination of cable tension is important to the monitoring of the condition of a cable-stayed bridge. When applying a vibration-based formula to identify the tension of a real cable under sag, stiffness and boundary conditions, the resulting error must not be overlooked. In this work, by resolving the implicit frequency function of a real cable under the above conditions numerically, indirect methods of determining the cable force and a method to calculate the corresponding cable mode frequency are investigated. The error in the tension is studied by numerical simulation, and an empirical error correction formula is presented by fitting the relationship between the cable force error and cable parameters ${\lambda}^2$ and ${\xi}$. A case study on two real cables of the Shanghai Changjiang Bridge shows that employing the method proposed in this paper can increase the accuracy of the determined cable force and reduce the computing time relative to the time required for the finite element model.

ANN-based Real-Time Damage Detection Algorithm using Output-only Acceleration Signals (가속도를 이용한 인공신경망 기반 실시간 손상검색기법)

  • Kim, Jung-Tae;Park, Jae-Hyung;Do, Han-Sung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.43-48
    • /
    • 2007
  • In this study, an ANN-based damage detection algorithm using acceleration signals is developed for alarming locations of damage in beam-type structures. A new ANN-algorithm using output-only acceleration responses is designed for damage detection in real time. The cross-covariance of two acceleration signals measured at two different locations is selected as the feature representing the structural condition. Neural networks are trained for potential loading patterns and damage scenarios of the target structure for which its actual loadings are unknown. The feasibility and practicality of the proposed method are evaluated from laboratory-model tests on free-free beams for which accelerations were measured before and after several damage cases.

  • PDF

Improved Morphing Visualization Methodology for Effective 4D Expression of Railway Facility (철도시설의 효율적 4D구현을 위한 개선된 Morphing 시각화 방법론 구축)

  • Moon, Hyoun-Seok;Kwon, Jung-Hui;Kim, Chang-Hak;Ji, Sang-Bok;Kang, Leen-Seok
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.350-353
    • /
    • 2006
  • Generally, 4D CAD can be used for visualizing construction schedule information in railway construction project. It is important that 3D CAD object should be represented by real construction situation according to construction site condition. However, it is difficult to visualize real construction situation in 4D CAD viewer because 3D objects should be separated by limited duration of each activity. This study suggests a morphing technology for visualizing 4D object by each activity schedule according to real construction progress.

  • PDF

A Study on the Method of Air-Fuel Ratio by Immediate Control in SI Engine (SI 기관의 공연비 제어 방법에 관한 연구)

  • Lee, J.S.;Lee, J.S;Ha, J.Y.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.252-258
    • /
    • 1998
  • In a SI engine, it is necessary to control fuel quantity in accordance with intake air amount in order to reduce exhaust emission and improve the specific fuel consumption. Generally the map data is used for the vehicles with a SI engine. For the precise control of air-fuel ratio, the real time control method is recommended rather than the control method using map data. In this paper, we developed real time control system using microprocessor and IBM-PC, and applied it to the commercial SI engine. We got good results for air-fuel ratio under the idle condition.

  • PDF

Optimal Checkpoint Placement for Real-Time Systems with Multi-Tasks Having Deadlines Longer Than Periods (데드라인이 주기보다 긴 멀티 태스크를 가진 실시간 시스템을 위한 최적 체크포인트 배치)

  • Kwak, Seong-Woo;Yang, Jung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.1
    • /
    • pp.148-154
    • /
    • 2012
  • For a successful checkpointing strategy, we should place checkpoints so as to optimize fault-tolerance capability of real-time systems. This paper presents a novel scheme of checkpoint placement for real-time systems with periodic multi-tasks. Under the influence of transient faults, multi-tasks are scheduled by the Rate Monotonic (RM) algorithm. The optimal checkpoint intervals are derived to maximize the probability of task completion. In particular, this paper is concerned about the general case that the deadline of a task is longer than the period. Compared with the special condition that the deadline is equal to or less than the period, this general case causes a more complicate test procedure for schedulability of the RM algorithm with respect to a given set of checkpoint re-execution vectors. The probability of task completion is also derived in a more complex form. A case study is given to show the applicability of the proposed scheme.

CFP Scheduling for Real-Time Service and Energy Efficiency in the Industrial Applications of IEEE 802.15.4

  • Ding, Yuemin;Hong, Seung Ho
    • Journal of Communications and Networks
    • /
    • v.15 no.1
    • /
    • pp.87-101
    • /
    • 2013
  • In industrial applications, sensor networks have to satisfy specified time requirements of exchanged messages. IEEE 802.15.4 defines the communication protocol of the physical and medium access control layers for wireless sensor networks, which support real-time transmission through guaranteed time slots (GTSs). In order to improve the performance of IEEE 802.15.4 in industrial applications, this paper proposes a new traffic scheduling algorithm for GTS. This algorithm concentrates on time-critical industrial periodic messages and determines the values of network and node parameters for GTS. It guarantees real-time requirements of periodic messages for industrial automation systems up to the order of tens to hundreds of milliseconds depending on the traffic condition of the network system. A series of simulation results are obtained to examine the validity of the scheduling algorithm proposed in this study. The simulation results show that this scheduling algorithm not only guarantees real-time requirements for periodic message but also improves the scalability, bandwidth utilization, and energy efficiency of the network with a slight modification of the existing IEEE 802.15.4 protocol.

A Study on Development of On-line Condition Monitoring Program of a Turboshaft Engine (터보샤프트 엔진의 온라인 상태감시 프로그램 개발에 관한 연구)

  • Kong, Chang-Duk;Kho, Seong-Hee;Ki, Ja-Young;Gu, Young-Joo;Jun, Yong-Min
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.6
    • /
    • pp.7-11
    • /
    • 2008
  • The helicopter flies at low level flight mode in its own operational range comparing to other aircraft categories. The low level flight means that the engine operates at variable atmospheric condition such as hot and cold temperature, snow, heavy rain, etc. Furthermore it may increase the entering possibility of engine foreign object damage particles like sand, dust, etc., i.e. this operating condition gives rise to damages of engine gas path components. An on-line condition monitoring program was developed by using SIMULINK, where measurement signals were simulated as an input module. The reliability and capability of the developed on-line condition monitoring were confirmed through application to a real helicopter engine health monitoring.

Optimal Cutting Condition in Side Wall Milling Considering Form Accuracy (측벽 엔드밀 가공에서 형상 정밀도를 고려한 최적 절삭 조건)

  • 류시형;최덕기;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.31-40
    • /
    • 2003
  • In this paper, optimal cutting condition to minimize the form error in side wall machining with a flat end mill is studied. Cutting forces and tool deflection are calculated considering surface shape generated by the previous cutting such as roughing. Using the form error prediction method from tool deflection, optimal cutting condition considering form accuracy is investigated. Also, the effects of tool teeth number, tool geometry and cutting conditions on form error are analyzed. The characteristics and the difference of generated surface shape in up and down milling are discussed and over-cut free condition in up milling is presented. Form error reduction method through successive up and down milling is also suggested. The effectiveness and usefulness of the presented method are verified from a series of cutting experiments under various cutting conditions. It is confirmed that form error prediction from tool deflection in side wall machining can be used in optimal cutting condition selection and real time surface error simulation for CAD/CAM systems. This study also contributes to cutting process optimization for the improvement of form accuracy especially in precision die and mold manufacturing.

An Investigation for Evaluation of the Safety of the Ship's Transit in the Planned Channel of Asan Port (아산항 계획 항로에서의 선박 통항의 안전성 평가 검토)

  • 이동섭;윤점동;정태권
    • Journal of the Korean Institute of Navigation
    • /
    • v.18 no.2
    • /
    • pp.41-56
    • /
    • 1994
  • This paper was a part of the risk management in planning a channel. It utilized Korea Marine Training & Research Institutes(KMTRI) which Houses a real-time, full-mission shiphandling simulator to examine the safety of the ship's transit in the planned channel of Asan port. 6 competent Captains participated in this study. The vessel modelled was a 60,000-ton ship. The two variables(factors) examined were environ-mental conditions such as flood-and-ebb current condition and day-and-night condition. The two variables were combined to produce four experimental conditions. To evaluate the safety of the environmental conditions, two categories of performance measures were analyzed. They were vessel's proximity to channel boundary and vessel controalbility. The findings regar-ding the effects of environmental conditions were as follows : - Closest Point of Approach(CPA) to channel boundary was enough for 60,000-ton ship to transit th-rough the channel with 99.999% confidence level. - Closest Point of Approach(CPA) to channel boundary further was under against-current condition than under with-current condition. -Vessel controlability was better under against-current condition than under with-current condition. -Vessel controlability was better under inbound transit than under outbound transit.

  • PDF

A Study on Development of On-line Condition Monitoring Program of a Turboshaft Engine (터보샤프트 엔진의 온라인 상태감시 프로그램 개발에 관한 연구)

  • Kong, Chang-Duk;Gu, Young-Joo;Kho, Seong-Hee;Ki, Ja-Young;Jun, Yong-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.163-166
    • /
    • 2008
  • The helicopter flies at low level flight mode in its own operational range comparing to other aircraft categories. The low level flight means that the engine operates at variable atmospheric condition such as hot and cold temperature, snow, heavy rain, etc. Furthermore it may increase the entering possibility of engine foreign object damage particles like sand, dust, etc., i.e. this operating condition gives rise to damages of engine gas path components. An on-line condition monitoring program was developed by using SIMULINK, where measurement signals were simulated as an input module. The reliability and capability of the developed on-line condition monitoring were confirmed through application to a real helicopter engine health monitoring.

  • PDF