• Title/Summary/Keyword: real Hilbert space

Search Result 61, Processing Time 0.021 seconds

TOPOLOGICAL APPROACH FOR THE MULTIPLE SOLUTIONS OF THE NONLINEAR PARABOLIC PROBLEM WITH VARIABLE COEFFICIENT JUMPING NONLINEARITY

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.19 no.1
    • /
    • pp.101-109
    • /
    • 2011
  • We get a theorem which shows that there exist at least two or three nontrivial weak solutions for the nonlinear parabolic boundary value problem with the variable coefficient jumping nonlinearity. We prove this theorem by restricting ourselves to the real Hilbert space. We obtain this result by approaching the topological method. We use the Leray-Schauder degree theory on the real Hilbert space.

A Central Limit Theorem for the Linear Process in a Hilbert Space under Negative Association

  • Ko, Mi-Hwa
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.4
    • /
    • pp.687-696
    • /
    • 2009
  • We prove a central limit theorem for the negatively associated random variables in a Hilbert space and extend this result to the linear process generated by negatively associated random variables in a Hilbert space. Our result implies an extension of the central limit theorem for the linear process in a real space under negative association to a simplest case of infinite dimensional Hilbert space.

LERAY-SCHAUDER DEGREE THEORY APPLIED TO THE PERTURBED PARABOLIC PROBLEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.17 no.2
    • /
    • pp.219-231
    • /
    • 2009
  • We show the existence of at least four solutions for the perturbed parabolic equation with Dirichlet boundary condition and periodic condition when the nonlinear part cross two eigenvalues of the eigenvalue problem of the Laplace operator with boundary condition. We obtain this result by using the Leray-Schauder degree theory, the finite dimensional reduction method and the geometry of the mapping. The main point is that we restrict ourselves to the real Hilbert space instead of the complex space.

  • PDF

NONTRIVIAL PERIODIC SOLUTION FOR THE SUPERQUADRATIC PARABOLIC PROBLEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.17 no.1
    • /
    • pp.53-66
    • /
    • 2009
  • We show the existence of a nontrivial periodic solution for the superquadratic parabolic equation with Dirichlet boundary condition and periodic condition with a superquadratic nonlinear term at infinity which have continuous derivatives. We use the critical point theory on the real Hilbert space $L_2({\Omega}{\times}(0 2{\pi}))$. We also use the variational linking theorem which is a generalization of the mountain pass theorem.

  • PDF

MULTIPLE SOLUTIONS FOR THE NONLINEAR PARABOLIC PROBLEM

  • Jung, Tacksun;Choi, Q-Heung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.2
    • /
    • pp.251-259
    • /
    • 2009
  • We investigate the multiple solutions for the nonlinear parabolic boundary value problem with jumping nonlinearity crossing two eigenvalues. We show the existence of at least four nontrivial periodic solutions for the parabolic boundary value problem. We restrict ourselves to the real Hilbert space and obtain this result by the geometry of the mapping.

  • PDF

Halpern Subgradient Method for Pseudomonotone Equilibrium Problems in Hilbert Space

  • Thang, Tran Van;Khoa, Nguyen Minh
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.3
    • /
    • pp.533-555
    • /
    • 2022
  • In this paper, we introduce a new algorithm for finding a solution of an equilibrium problem in a real Hilbert space. Our paper extends the single projection method to pseudomonotone variational inequalities, from a 2018 paper of Shehu et. al., to pseudomonotone equilibrium problems in a real Hilbert space. On the basis of the given algorithm for the equilibrium problem, we develop a new algorithm for finding a common solution of a equilibrium problem and fixed point problem. The strong convergence of the algorithm is established under mild assumptions. Several of fundamental experiments in finite (infinite) spaces are provided to illustrate the numerical behavior of the algorithm for the equilibrium problem and to compare it with other algorithms.

The Three-step Intermixed Iteration for Two Finite Families of Nonlinear Mappings in a Hilbert Space

  • Suwannaut, Sarawut;Kangtunyakarn, Atid
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.1
    • /
    • pp.69-88
    • /
    • 2022
  • In this work, the three-step intermixed iteration for two finite families of nonlinear mappings is introduced. We prove a strong convergence theorem for approximating a common fixed point of a strict pseudo-contraction and strictly pseudononspreading mapping in a Hilbert space. Some additional results are obtained. Finally, a numerical example in a space of real numbers is also given and illustrated.

STABILITY Of ISOMETRIES ON HILBERT SPACES

  • Jun, Kil-Woung;Park, Dal-Won
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.141-151
    • /
    • 2002
  • Let X and Y be real Banach spaces and $\varepsilon$, p $\geq$ 0. A mapping T between X and Y is called an ($\varepsilon$, p)-isometry if |∥T(x)-T(y)∥-∥x-y∥|$\leq$ $\varepsilon$∥x-y∥$^{p}$ for x, y$\in$X. Let H be a real Hilbert space and T : H longrightarrow H an ($\varepsilon$, p)-isometry with T(0) = 0. If p$\neq$1 is a nonnegative number, then there exists a unique isometry I : H longrightarrow H such that ∥T(x)-I(y)∥$\leq$ C($\varepsilon$)(∥x∥$^{ 1+p)/2}$+∥x∥$^{p}$ ) for all x$\in$H, where C($\varepsilon$) longrightarrow 0 as $\varepsilon$ longrightarrow 0.

APPROXIMATE PROJECTION ALGORITHMS FOR SOLVING EQUILIBRIUM AND MULTIVALUED VARIATIONAL INEQUALITY PROBLEMS IN HILBERT SPACE

  • Khoa, Nguyen Minh;Thang, Tran Van
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.4
    • /
    • pp.1019-1044
    • /
    • 2022
  • In this paper, we propose new algorithms for solving equilibrium and multivalued variational inequality problems in a real Hilbert space. The first algorithm for equilibrium problems uses only one approximate projection at each iteration to generate an iteration sequence converging strongly to a solution of the problem underlining the bifunction is pseudomonotone. On the basis of the proposed algorithm for the equilibrium problems, we introduce a new algorithm for solving multivalued variational inequality problems. Some fundamental experiments are given to illustrate our algorithms as well as to compare them with other algorithms.