• Title/Summary/Keyword: ready-mixed concrete plant

Search Result 51, Processing Time 0.026 seconds

Evaluating the Efficiency of Ready Mixed Concrete Batch Plant of Using Real-Time Travel Information (실시간 운행정보를 이용한 레미콘 배치플랜트의 효율성 평가)

  • Choi, Jin-Ho;Kim, Jun-Hyun
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2010.09a
    • /
    • pp.295-297
    • /
    • 2010
  • 본 연구에서는 GIS, GPS, Web기술을 이용하여 레미콘 차량의 운행상황과 이동경로 등을 실시간으로 파악 한 후 차량의 위치와 목적지 도착시간, 복귀예정시간 등을 예측하는 레미콘 차량 관제 시스템을 레미콘 배치플랜트의 도입 시 효율성을 평가하였다. 그 결과 공사현장에서 복귀하는 레미콘 차량의 도착시간이내 복귀거리등을 사전에 미리 차량관제서버로 전송해 주는 알림기능으로 인해 배치플랜트의 다음 배차를 위한 레디믹스가 반자동적으로 작동하여 차량의 대기나 다음 배차를 위한 차량 위치 파악 등의 지연시간이 현저히 감소되었다. 이는 1일 8시간을 기준 20대의 레미콘 차량을 분석 한 결과 실시간 운행정보를 통한 배치플랜트의 가동으로 인해 1일 155분의 시간이 절감되어 일 평균 2.5대의 레미콘 차량의 추가적 운행이 가능하였으며, 이를 비용으로 환산시 일 평균 90만원, 월 약 1920만원의 추가적인 이익이 발생하여 레미콘차량 관제 시스템에 따른 배치플랜트의 작동은 기업차원에서의 경제적 측면을 고려할 때 매우 효율적인 것으로 판단되었다.

  • PDF

A Fundamental Study on the Influence of Fresh Concrete Quality Properties due to the Cover of Concrete Mixer Truck (콘크리트 믹서 트럭 덮개의 유무가 콘크리트 품질 특성에 미치는 영향에 관한 기초연구)

  • Chae, Young-Suk;Lim, Byung-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.198-204
    • /
    • 2010
  • The cover of truck agitator give in a part to prevent the lower flowing of fresh concrete when the concrete are transported from the ready mixed concrete plant to the construction field. As a result of the question data, it show up a dirty image to the general civil society. Due to the above image, it is predicted to affect the image of the construction company, so we did the site experiment of the flowing, the amounts of air, the temperature change of concrete with the concrete left in the site, to find out the usefulness. Also, for the comparing with this, we got the result by doing the inner experiment with the same condition. As the result of the experiment, the cover of truck agitator affect little to the reduction of slump. The change of the air amount, regardless of the existence of cover, was not effected much in proper level until 60minutes. In addition, The compression strength was proper to the goal design strength until 90minutes regardless of the cover of truck agitator exist or not exist.

Status of Ready-Mixed Concrete Plants and Raw Materials in Pusan (부산지역 레미콘 플랜트 및 원재료 현황)

  • Yoo, Seung-Yeup;Koo, Ja-Sul;Lee, Yang-Soo;Moon, Hyung-Jae;Kim, Jung-Jin;Park, Soon-Jeon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.641-644
    • /
    • 2008
  • This paper investigated the plant and raw material of the ready-mixed concrete company which could supply to the second Lotte World on Pusan. the results were summarized as following. Almost plants were mainly using Twin shaft mixer which was 210m$^3$/hr and horizontal type. There was different the number of admixture silos at each plants, and they were separated by types. The mixtures mainly consisted of the ordinary portland cement, fly ash and blast furnace slag. For favorable quality control, each materials had to carry from same factories, and the monitering standard for quality control should be prepared. The coarse aggregates were used with many different producing districts, so they were only used from Y caused by exclusion of quality difference. The crushed, washed and river sands were generally used as fine aggregates, so the fine aggregates which could be possible to supply stable quality were chosen. This study used Poly Carbonic Acid Admixture which was developed to satisfy maintenance of performance till 2 hours and 10MPa at 15 hours.

  • PDF

Effect of Repeated Addition of Admixture on Mechanical Properties of Concrete (혼화제의 반복된 추가가 콘크리트의 역학적 특성에 미치는 영향)

  • Lee, Si-Woo;Yi, Seong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.148-153
    • /
    • 2010
  • Concrete used as structural materials in construction fields is supplied as a type of carry and placement by ready-mixed concrete (RMC) truck after proportioning in batch plant. However, during conveying of concrete to the field, due to traffic jam, weather, etc., it is not easy to maintain adequate slump. In this case, we think that the insert of an admixture to concrete has no problem in concrete. For RMC, when the slump is not sufficient, the truck driver insert water additionally without any considerations. After that, concrete is placed after re-mixing and this leads to serious reasons such as strength reduction less than design strength considered in the structural design. Accordingly, in this study, to solve the problem to insert water without realistic reasons in RMC, basic experimental studies were performed. Admixtures used frequently in fields were selected and addition's repeated time and elapsed time interval after initial addition of the admixture were selected as main variables. Authors want that the results of this study is used as basic data to resolve the question.

Bottom Ash on the Application for Use as Fine Aggregate of Concrete (바텀 애시를 콘크리트 잔골재로 사용하기 위한 활용성에 관한 연구)

  • Kim, Seong-Soo;Lee, Jeong-Bae;Park, Seung-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.3
    • /
    • pp.173-179
    • /
    • 2014
  • This is an experimental study for recycling coal ash left over from coal use as a potential fine aggregate in concrete. Coal ash is generally divided into either fly ash or bottom ash. Fly ash has been utilized as a substitution material for cement in concrete mixes. On the other hand, bottom ash has the problem of low recycling rates, and thus it has been primarily reclaimed. This study partially substituted fine concrete aggregates with bottom ash to increase its application rate and therefore its recycling rate; its suitability for this purpose was confirmed. The concrete's workability dropped noticeably with increasing bottom ash content when a fixed water-cement ratio of concrete mix was used. Thus, concrete mixes with higher ratio levels are required. To address this problem, concrete was mixed using a polycarboxylate high-range water reducing agent. The fluidity and air entrainment immediately after mixing the concrete and 1 h after mixing were measured, thereby replicating the time concrete is placed in the field when produced either in a ready-mixed concrete or in a batch plant. As a result of this research, the workability and air entrainment were maintained 1 h after mixing for a concrete mixture with approximately 30% of its fine concrete aggregates substituted with the bottom ash. A slight drop in compression strength was seen; however, this confirmed that potential of using bottom ash as a fine aggregate in concrete.

The Compressive Strength and Durability Properties of Polypropylene Fiber Reinforced EVA Concrete (폴리프로필렌 섬유 보강 EVA 콘크리트의 압축강도 및 내구성)

  • Nam, Ki Sung;Sung, Chan Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.4
    • /
    • pp.11-19
    • /
    • 2015
  • The important properties of EVA (ethylene vinyl acetate) redispersible polymer was waterproof, densification of internal pore space of concrete and ball bearing and micro filler. Also, the significant role of polypropylene(PP) fiber was crack control and blockade of movement for deterioration factors. The most studies for EVA were limited in the field of mortar and PP fiber reinforced concrete had been studied in the state of being restricted unit water content, rich mix and mixing much of the fiber without considering construction site. Therefore, the control mix design were applied in ready mixed concrete using 10 % fly ash of total cement weight used in batch plant. On the basis of control mix design, EVA contents ranging from 0 % to 10 % of total cement weight and PP fiber contents ranging from 0 % to 0.5 % of EVA concrete volume were used in the mix designs. The results showed the maximum compressive strength value was measured at EVA 5.0 % and PP fiber 0.1 %, the minimum water absorption ratio was at EVA 10 % and PP fiber 0 %, the durability factor for freezing and thawing resistance was at EVA 5.0 % and PP fiber 0.3 % and the minimum weight reduction ratio of resistance to sulfuric acid attack was at EVA 10 % and PP fiber 0.5 % after curing age 42days. Meanwhile, From these results, PP fiber reinforced EVA concrete would be very benefit, if each optimal mix types were used in hydraulic structures, underground utilities and agricultural structures.

A Model for Lifecycle CO2 Assessment of Building Structures Considering the Mixture Proportions of Concrete (콘크리트 배합설계를 고려한 구조물의 전과정 CO2평가 모델)

  • Yang, Keun-Hyeok;Seo, Eun-A
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.201-210
    • /
    • 2014
  • The present study proposes a phased model to assess the lifecycle $CO_2$ amount of concrete structures. The considered system boundary is from cradle to recycling, which includes constituent material, transportation, batching and mixing in ready-mixed concrete plant, use and demolition of structure, and crushing and recycling of demolished concrete. The $CO_2$ uptake of concrete by carbonation during lifetime (40 years) of a structure and the recycling life (20 years) after demolition is estimated using a simple approach generalized to predict the carbonation depth from the surfaces of concrete element and recycled aggregates. Based on the proposed phased model, a performance evaluation table is realized to straightforwardly examine the lifecycle $CO_2$ amount of concrete structures. The proposed model demonstrates that the contribution of ordinary portland cement (OPC) to lifecycle $CO_2$ emission of the concrete structure occupies approximately 85%. Furthermore, the $CO_2$ uptake is estimated to be approximately 15~18% of the lifecycle $CO_2$ emissions of concrete structures, which corresponds to be 19~22% of the emissions from OPC production. Overall, the proposed $CO_2$ performance table is expected to be practically useful as a guideline to determine the $CO_2$ emission or uptake at each phase of concrete structures.

Analysis of Time-Series data According to Water Reduce Ratio and Temperature and Humidity Changes Affecting the Decrease in Compressive Strength of Concrete Using the SARIMA Model

  • Kim, Joon-Yong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.10
    • /
    • pp.123-130
    • /
    • 2022
  • In this paper is one of the measures to prevent concrete collapse accidents at construction sites in advance. Analyzed based on accumulated Meteorological Agency data. It is a reliable model that confirms the prediction of the decrease rate occurrence interval, and the verification items such as p_value is 0.5 or less and ecof appears in one direction through the SARIMA model, which is suitable for regular and clear time series data models, ensure reliability. Significant results were obtained. As a result of analyzing the temperature change by time zone and the water reduce ratio by section using the data secured based on such trust, the water reduce ratio is the highest in the 29-31 ℃ section from 12:00 to 13:00 from July to August. found to show. If a factor in the research result interval occurs using the research results, it is expected that the batch plant will produce Ready-mixed concrete that reflects the water reduce ratio at the time of designing the water-cement mixture, and prevent the decrease in concrete compressive strength due to the water reduce ratio.

Environmental Impact Assessment of Different Concrete Mixture Proportions according to Domestic Region and Season (국내의 지역 및 계절에 따른 콘크리트 배합별 환경영향평가)

  • Seo, Eun-A;Yang, Keun-Hyeok;Jung, Yeon-Back
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.239-245
    • /
    • 2014
  • This study analyzed a comprehensive database including 6331 ready-mixed concrete plant mixtures to quantitatively assess the environmental impact of concrete under mixture proportions variable according to the domestic region and season. The environmental impact indicator includes global warming, photochemical oxidant creation, abiotic resource depletion, acidification, eutrophication and human toxicity, which are determined from categorization, characterization, normalization and weighting process based on Korea lifecycle inventories. The determined environmental impact indicator was also normalized by concrete compressive strength ($f_{ck}$), which is defined as impact index, to calculate the environmental impact per unit strength of 1 MPa. The most common compressive strength of concrete used in the country is estimated to be 24 MPa and 27 MPa. For $f_{ct}$ of 24 MPa, the lowest environmental impact indicator is observed in Ulsan, whereas the highest region is Gwangju and Daegu. This difference according to domestic region is primarily resulted from by the replacement of different supplementary cementitious materials. Furthermore, the impact index of concrete with $f_{ck}$ of 24 MPa is higher by approximately 5% at wintertime than at summertime and standard season. The impact index gradually decreases with the increase of $f_{ck}$ up to 35 MPa, beyond which it remains constant.

Quality Analysis of Fly Ash Through Correlation between Density by Hydrometer and Test Report (Hydrometer법을 이용한 밀도 측정값과 시험 성적서간 상관분석을 통한 플라이애시의 품질특성 분석)

  • Song, Heung-Ho;Han, Cheon-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.4
    • /
    • pp.305-312
    • /
    • 2017
  • To evaluate the reliability of fly ash quality supplied to ready-mixed concrete plant using mass cylinder and hydrometer, in this research, the correlationship between the fly ash properties provided from certification and density measurement with suspension was evaluated. As a result, the reliability of the certification, except fineness and loss on ignition, all properties had a discord. Additionally, in the case of density, fineness, and L.O.I, the relation with the density measured using hydrometer showed high correlation, especially fineness was strongly related with the density measured using hydrometer. Furthermore, according to the comparative analysis with previous research, the fly ash used in this research was similar measurement with raw powder without any refining process, it is considered that the constant error of blaine test or using raw ash sample as a fly ash. In current standard regarding fly ash, the fineness range of class 2 can be changed from $3,000-4,500cm^2/g$ to $3,500-4,500cm^2/g$ for improved quality of fly ash in fineness aspect.