• Title/Summary/Keyword: reactors

Search Result 1,780, Processing Time 0.021 seconds

Effect of waste components on performance of acidogenic fermenter (음식물쓰레기의 구성성분에 따른 산발효조의 거동특성)

  • Han, Sun-Kee;Shin, Hang-Sik;Kim, Sang-Hyoun;Kim, Hyun-Woo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.2
    • /
    • pp.65-70
    • /
    • 2002
  • The previous studies showed that rumen microorganisms had an enhanced waste-degrading capability and controlling the dilution rate was very effective in improving acidification efficiency. Generally the composition of food waste has a small deviation value, but one of the waste components (grains, vegetables or meats) can be increased dramatically depending on a seasonal variation. Thus, it is important to evaluate the efficiency of acidogenic fermentation in this case. Each component was spiked to be 80% of the total waste in R1 (grains), R2(vegetables), and R3 (meats). In Rl, rapid degradation occurred during the initial two days. R2 showed similar performance to that of general food waste. In R3, degradation retarded in the initial stage and then increased after controlling the dilution rate. The acidification efficiencies of the reactors were 88.7 (R1), 73.5 (R2), and 62.1% (R3), respectively. Therefore, the fermentation efficiency was kept over 62% regardless of waste components, indicating that it was stable to acidify food waste by employing rumen microorganisms and controlling the dilution rate.

  • PDF

A Study on Recycling of Food Garbage - For Compost - (음식물찌꺼기의 재활용에 관한 연구 - 퇴비화로서 -)

  • Kim, Nam-Cheon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.2 no.1
    • /
    • pp.51-64
    • /
    • 1994
  • To compost the food garbage with the dry bean curd and sawdust as the bulking agents, the method of high-speed fermentation by the characteristic microorganisms group was applied. The results of experiments are summarized as follows ; 1. Korean food garbage, which is high in water content, is difficult to compost only by microorganism fermentation without the addition of bulking agents such as dry bean curd cake and sawdust. 2. Weight reduction rates are ranging from 35.6% to 64.5% and varying with the composition of food garbage. The less weight reduction rate is, the longer continuous-fermentation is. And the color of compost is changing sequentially as yellow -> brown -> black. 3. Comparing with the controlled microorganism group, the weight reduction rate and $H_2CO_3$ production rate in the characteristic microorganism group fermentation reactors are higher. And the fermentation rate is satisfactory when the characteristic microorganism group is added. 4. The value of fermented composting as fertilizer diminishes, and the contents of Total Nitrogen, $P_2O_5$, $K_2O$ increase on the condition that the fermentation continues. However, the organic contents and C/N ratio diminish as the fermentation continues. 5. The high-speed fermentation technology demonstractes the possibility of recycling as well as the reduction of composting time provided that it is applied as a pretreatment process for composting.

  • PDF

Conditions Affecting Vegetable Waste Composting (야채쓰레기의 효율적 퇴비화를 위한 운영조건)

  • Choi, Jung-Young;Namkoong, Wan
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.2 no.1
    • /
    • pp.19-29
    • /
    • 1994
  • The purpose of this study was to investigate the feasibility of composting of vegetable wastes containing high moisture. The parameters investigated were the effect of energy source addition, difference in bulking agent and recirculation of leachate produced during composting. Laboratory scale composting reactors were used in this study. Chinese cabbages were used as a vegetable waste. Dog food was added to the vegetable waste as a energy source. Wood chips and leaves of platan were used as bulking agents. There may be an appropriate amount of energy source to be added for composting high moisture content vegetable waste. In this study, the appropriate amount of energy source was 20% of the vegetable waste by weight basis. Recirculation of total amount of leachate produced each day on the same day may not be an appropriate approach due to the significant heat-quenching effect. When the total amount of leachate produced was equally devided and recirculated everyday through the whole composting period, the heat-quenching effect was comparatively less significant. There were no notable differences in the temperature profile and the $CO_2$ evoluation rate when leaves were used instead of wood chips as bulking agents. Considering waste recycling, it is desirable to use leaf waste as bulking agents if available, because the leaves are also wastes to be disposed of.

  • PDF

Bioactive Foam Reactors for the Enhanced Biological Degradation of Toluene (계면활성제 거품을 이용한 미생물반응기에서의 기체상 톨루엔 분해)

  • Kim, Yong-Sik;Son, Young-Kyu;Khim, Jee-Hyung;Song, Ji-Hyeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.5
    • /
    • pp.468-475
    • /
    • 2005
  • Biofilters packed with various materials have emerged as a sustainable technology for the treatment of volatile organic compounds (VOCs); however, problems including low performance and clogging are commonly encountered. Recently, a bioactive foam reactor (BFR) using surfactants has been suggested to ensure efficient and stable VOCs removal performance. This study was mainly conducted to investigate the feasibility of BFRs using toluene as a model compound. Prior to bioreactor studies, a series of bottle tests were used to select a suitable surfactant for the BFR application. Experimental results of the batch bottle tests indicated that TritonX-100 was the most appropriate one among the surfactants tested, since it showed a minimal effect on the toluene biodegradation rate while the other surfactants lowered the toluene biodegradation rate significantly. Using the selected surfactant, the BFR performance was determined by changing operating parameters including gas residence time and toluene loading. As the gas residence time increased from 0.5 minutes to 2 minutes, the toluene removal efficiency increased from approximately 50% to 80%. In addition, an increase of the toluene loading from $38\;g/m^3/hr$ to $454\;g/m^3/hr$ resulted in a decrease of toluene removal efficiency from approximately 70% to 20%. The BFR had a maximum elimination capacity of $108\;g/m^3/hr$ for toluene, which was much higher than those generally reported in the literature. The high toluene-elimination performance indicates that the BFR be a potential alternative to the conventional, packed-type biofilters. However, the limitation of toluene solubilization and foam stability at either high or low gas flow rate are still problems to be challenged.

Kinetics of Photocatalytic Reactions with Porous Carriers Coated with Nano-$TiO_2$ Particles (나노-$TiO_2$ 입자로 코팅된 다공성 담체의 광촉매 반응에 관한 동력학)

  • Park, Seong-Jun;Rittmann, Bruce E.;Bae, Woo-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.10
    • /
    • pp.927-932
    • /
    • 2009
  • Toxic and recalcitrant organic pollutants in wastewaters can be effectively treated when advanced oxidation and biodegradation are combined, ideally with intimate coupling, in which both processes occur simultaneously in the same system. One means to achieve intimate coupling is to coat nanoscale $TiO_2$ on the outside of macroporous biofilm carriers. This study investigated the kinetics of photocatalysis with $TiO_2$-coated porous carriers. The carriers were made of polyvinyl alcohol (PVA) and coated with $TiO_2$ using a low-temperature sol-gel process. The $TiO_2$-coated carriers catalyzed the oxidation of methylene blue (MB) effectively under irradiation of UV light. The overall reaction rate with adsorption and photolysis saturated at high MB concentration, and approached the adsorption rate, which was first order for all MB concent rations. This result indicates that adsorbed MB may have slowed photocatalysis by blocking active sites for photocatalysis. The overall kinetics could be described by a quasi-Langmuir model. The estimated maximum specific (per unit mass of $TiO_2$) transformation rate of MB by the $TiO_2$-coated carriers was four times larger than that obtained from slurry-$TiO_2$ reactors. This observation demonstrated that the $TiO_2$ present as a coating on the carriers maintained high efficiency for transforming recalcitrant organic matter via photocatalysis. These findings serve as a foundation for advancement of an intimate coupling of photocatalysis to biodegradation.

Estimation of Kinetic Coefficient in Submerged Membrane Bioreactor for Biological Nutrient Removal (도시 하수의 생물학적 고도처리를 위한 분리막 공정의 개발 및 동역학적 계수 산정 연구)

  • Park, Jong-Bu;Park, Seung-Kook;Hur, Hyung-Woo;Kang, Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.2
    • /
    • pp.109-113
    • /
    • 2009
  • This study was performed to investigate the characteristics of nutrient removal of municipal wastewater in membrane bioreactor system. Membrane bioreactor consists of four reactors such as the anaerobic, the stabilization, the anoxic and the submerged membrane aerobic reactor with two internal recycles. The hydraulic retention time (HRT), sludge retention time (SRT) and flux were 6.2 h, 34.1 days and 19.6 L/$m^2$/hr (LMH), respectively. The removal efficiency of $COD_{Cr}$, SS, TN and TP were 94.3%, 99.9%, 69.4%, and 74.6%, respectively. The estimated true biomass yield, specific denitrification rate (SDNR), specific nitrification rate (SNR), specific phosphorus release rate (SPRR) and specific phosphorus uptake rate (SPUR) were 0.653 kgVSS/kgBOD/d, 0.044 $mgNO_3$-N/mgVSS/d, 0.035 $mgNH_4$-N/mgVSS/d, 51.0 mgP/gVSS/d and 5.4 mgP/gVSS/d, respectively. The contents of nitrogen and phosphorus of biomass were 8.86% and 3.5% on an average.

The Effect of the Reaction Time Increases of Microbubbles with Catalyst on the Nitrogen Reduction of Livestock Wastewater (가축분뇨의 마이크로버블과 촉매와의 반응 시간 증가에 따라 질소 제거에 미치는 영향)

  • Jang, Jae Kyung;Sung, Je Hoon;Kang, Youn Koo;Kim, Young Hwa
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.10
    • /
    • pp.578-582
    • /
    • 2015
  • It was investigated whether the removal of nitrogen ions included livestock wastewater were increased by increasing the reaction time of livestock wastewater and microbubbles with catalyst. For this study, the nitrogen reduction system using microbubbles with catalyst was used. The two reactors were consecutively arranged, and the second reactor (Step 2) was located to next the first reactor (Step 1). Each reactor was reacted for 2 hours and air or oxygen as oxidant was fed into the reactor during operation before microbubble device. When oxygen was used, ammonia nitrogen was removed each 18.3% and 52.8% during 2 (only step 1) and 4 (step 1 and step 2) hours reactions. This value was higher than that of when air was fed. When oxygen was used, the longer the reaction time, the ammonia nitrogen removal was higher. The longer the reaction time, the higher the nitrite and nitrate was also removed such as ammonia nitrogen. Also this system was examined whether organic matter removal is effective. The total chemical oxygen demand (TCOD) removal was higher than the soluble chemical oxygen demand (SCOD). Some materials among causing substances COD were difficult to decompose biologically. Therefore, it means that it will be easy to operate the biological processes following step and reduce the concentration of organic contaminants in effluent.

Effect of hydrothermal processing on ginseng extract

  • Ryu, Jebin;Lee, Hun Wook;Yoon, Junho;Seo, Bumjoon;Kwon, Dong Eui;Shin, Un-Moo;Choi, Kwang-joon;Lee, Youn-Woo
    • Journal of Ginseng Research
    • /
    • v.41 no.4
    • /
    • pp.572-577
    • /
    • 2017
  • Background: Panax ginseng Meyer is cultivated because of its medicinal effects on the immune system, blood pressure, and cancer. Major ginsenosides in fresh ginseng are converted to minor ginsenosides by structural changes such as hydrolysis and dehydration. The transformed ginsenosides are generally more bioavailable and bioactive than the primary ginsenosides. Therefore, in this study, hydrothermal processing was applied to ginseng preparation to increase the yields of the transformed ginsenosides, such as 20(S)-Rg3, Rk1, and Rg5, and enhance antioxidant activities in an effective way. Methods: Ginseng extract was hydrothermally processed using batch reactors at $100-160^{\circ}C$ with differing reaction times. Quantitative analysis of the ginsenoside yields was performed using HPLC, and the antioxidant activity was qualitatively analyzed by evaluating 2,2'-azino-bis radical cation scavenging, 2,2-diphenyl-1-picrylhydrazyl radical scavenging, and phenolic antioxidants. Red ginseng and sun ginseng were prepared by conventional steaming as the control group. Results: Unlike steaming, the hydrothermal process was performed under homogeneous conditions. Chemical reaction, heat transfer, and mass transfer are generally more efficient in homogeneous reactions. Therefore, maximum yields for the hydrothermal process were 2.5-25 times higher than those for steaming, and the antioxidant activities showed 1.6-4-fold increases for the hydrothermal process. Moreover, the reaction time was decreased from 3 h to 15-35 min using hydrothermal processing. Conclusion: Therefore, hydrothermal processing offers significant improvements over the conventional steaming process. In particular, at temperatures over $140^{\circ}C$, high yields of the transformed ginsenosides and increased antioxidant activities were obtained in tens of minutes.

Economic Design of Activated Sludge System at the Optimum Sludge Concentration (슬러지 농도 최적화에 따른 합리적인 활성슬러지공정 설계방안 연구)

  • Lee, Byung Joon;Choi, Yun Young
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.5
    • /
    • pp.483-490
    • /
    • 2014
  • The design procedures for a biological reactor and a secondary settling tank (SST) of an activated sludge system are based on the steady state design method (Ekama et al., 1986; WRC, 1984) and the 1-D flux theory design method (Ekama et al., 1997), respectively. This study combined both of the design procedures, to determine the optimum sludge concentration in the reactor and the best design with the lowest cost. The best design of the reactor volume and the SST diameter at the optimum sludge concentration were specified with varying wastewater and sludge characteristics, temperature, sludge retention time (SRT) and peak flow rate. The effects of the influent wastewater characteristics, such as substrate concentration and unbiodegradable particulate fraction, were found to be considerable, but the effect of unbiodegradable soluble fraction was to be negligible. The effects of sludge settling characteristics, were also significant. SRT, as an operating parameter, was found to be an important factor for determining the optimum sludge concentration. However, the effect of temperature was found to be small. Furthermore, for designing a large scale wastewater treatment plant, the number of reactors or SSTs could be estimated, by dividing the total reactor volume or SST area. The new combined design procedure, proposed in this research, will be able to allow engineers to provide the best design of an activated sludge system with the lowest cost.

Analysis of Metabolism and Effective Half-life for Tritium Intake of Radiation Workers at Pressurized Heavy Water Reactor (중수로원전 종사자의 삼중수소 체내섭취에 따른 인체대사모델과 유효반감기 분석)

  • Kim, Hee-Geun;Kong, Tae-Young
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.2
    • /
    • pp.87-94
    • /
    • 2009
  • Tritium is the one of the dominant contributors to the internal radiation exposure of workers at pressurized heavy water reactors (PHWRs). This nuclide is likely to release to work places as tritiated water vapor (HTO) from a nuclear reactor and gets relatively easily into the body of workers by inhalation. Inhaled tritium usually reaches the equilibrium of concentration after approximately 2 hours inside the body and then is excreted from the body with a half-life of 10 days. Because tritium inside the body transports with body fluids, a whole body receives radiation exposure. Internal radiation exposure at PHWRs accounts for approximately 20-40% of total radiation exposure; most internal radiation exposure is attributed to tritium. Thus, tritium is an important nuclide to be necessarily monitored for the radiation management safety. In this paper, metabolism for tritium is established using its excretion rate results in urine samples of workers at PHWRs and an effective half-life, a key parameter to estimate the radiation exposure, was derived from these results. As a result, it was found that the effective half-life for workers at Korean nuclear power plants is shorter than that of International Commission on Radiological Protection guides, a half-life of 10 days.