• 제목/요약/키워드: reactors

검색결과 1,806건 처리시간 0.027초

DEVELOPMENT STATUS OF IRRADIATION DEVICES AND INSTRUMENTATION FOR MATERIAL AND NUCLEAR FUEL IRRADIATION TESTS IN HANARO

  • Kim, Bong-Goo;Sohn, Jae-Min;Choo, Kee-Nam
    • Nuclear Engineering and Technology
    • /
    • 제42권2호
    • /
    • pp.203-210
    • /
    • 2010
  • The $\underline{H}igh$ flux $\underline{A}dvanced$ $\underline{N}eutron$ $\underline{A}pplication$ $\underline{R}eact\underline{O}r$ (HANARO), an open-tank-in-pool type reactor, is one of the multi-purpose research reactors in the world. Since the commencement of HANARO's operations in 1995, a significant number of experimental facilities have been developed and installed at HANARO, and continued efforts to develop more facilities are in progress. Owing to the stable operation of the reactor and its frequent utilization, more experimental facilities are being continuously added to satisfy various fields of study and diverse applications. The irradiation testing equipment for nuclear fuels and materials at HANARO can be classified into capsules and the Fuel Test Loop (FTL). Capsules for irradiation tests of nuclear fuels in HANARO have been developed for use under the dry conditions of the coolant and materials at HANARO and are now successfully utilized to perform irradiation tests. The FTL can be used to conduct irradiation testing of a nuclear fuel under the operating conditions of commercial nuclear power plants. During irradiation tests conducted using these capsules in HANARO, instruments such as the thermocouple, Linear Variable Differential Transformer (LVDT), small heater, Fluence Monitor (F/M) and Self-Powered Neutron Detector (SPND) are used to measure various characteristics of the nuclear fuel and irradiated material. This paper describes not only the status of HANARO and the status and perspective of irradiation devices and instrumentation for carrying out nuclear fuel and material tests in HANARO but also some results from instrumentation during irradiation tests.

DEVELOPMENT OF A TWO-DIMENSIONAL THERMOHYDRAULIC HOT POOL MODEL AND ITS EFFECTS ON REACTIVITY FEEDBACK DURING A UTOP IN LIQUID METAL REACTORS

  • Lee, Yong-Bum;Jeong, Hae-Yong;Cho, Chung-Ho;Kwon, Young-Min;Ha, Kwi-Seok;Chang, Won-Pyo;Suk, Soo-Dong;Hahn, Do-Hee
    • Nuclear Engineering and Technology
    • /
    • 제41권8호
    • /
    • pp.1053-1064
    • /
    • 2009
  • The existence of a large sodium pool in the KALIMER, a pool-type LMR developed by the Korea Atomic Energy Research Institute, plays an important role in reactor safety and operability because it determines the grace time for operators to cope with an abnormal event and to terminate a transient before reactor enters into an accident condition. A two-dimensional hot pool model has been developed and implemented in the SSC-K code, and has been successfully applied for the assessment of safety issues in the conceptual design of KALIMER and for the analysis of anticipated system transients. The other important models of the SSC-K code include a three-dimensional core thermal-hydraulic model, a reactivity model, a passive decay heat removal system model, and an intermediate heat transport system and steam generation system model. The capability of the developed two-dimensional hot pool model was evaluated with a comparison of the temperature distribution calculated with the CFX code. The predicted hot pool coolant temperature distributions obtained with the two-dimensional hot pool model agreed well with those predicted with the CFX code. Variations in the temperature distribution of the hot pool affect the reactivity feedback due to an expansion of the control rod drive line (CRDL) immersed in the pool. The existing CRDL reactivity model of the SSC-K code has been modified based on the detailed hot pool temperature distribution obtained with the two-dimensional pool model. An analysis of an unprotected transient over power with the modified reactivity model showed an improved negative reactivity feedback effect.

Alum 주입 메쉬 침지 여과분리형 생물반응조의 운전 특성과 인 제거 (Phosphorus Removal and Operating Performance of Mesh Filtration Bio-reactor with the Addition of Alum)

  • 정용준;민경석
    • 한국물환경학회지
    • /
    • 제21권5호
    • /
    • pp.458-463
    • /
    • 2005
  • Considering the characteristics of a filtration bio-reactor equipped with a mesh filter module which can effectively maintain high concentration of biomass and enhanced solid-liquid separation performance, the hybrid process of filtration bio-reactor combined with coagulation was investigated to get improved filtration characteristics as well as water quality in this work. Two bio-reactors (Run-1 & Run-2) were operated under the following conditions: working volume of 25 L, continuous loading of a synthetic wastewater (BOD: 200 mg/L, T-N: 50 mg/L, T-P: 5 mg/L), where an appropriate amount of alum ($Al_2(SO_4)_3{\cdot}18H_2O$) was added once a day into the reactor (Run-2). In the system without using a alum (Run-1), the clogging of mesh filter module was observed two times through 85 days of whole operation. Meanwhile, the filter module did not clog even at higher MLSS concentration (6,000~12,000 mg/L) and the stable filtration (0.7 mid) was continued in the case of using a alum. Due to the stable formation of cake layers, BOD and SS were shown below 6 and 3 mg/L, respectively. T-P and pH of the effluent were changed because of the intermittent addition of the alum. In the case of Al/P=2.5, the average T-P removal efficiency per day was 85.2% and the average T-P concentration of the effluent was 0.3 mg/L. However, the removal efficiency of phosphate was influenced by pH in the reactor.

유입부하가 DEPHANOX 및 Modified-DEPHANOX 공정에 미치는 영향 (Effect of Loading Rate in the Operation of DEPHANOX and Modified-DEPHANOX Processes)

  • 류홍덕;민경국;이상일
    • 한국물환경학회지
    • /
    • 제20권1호
    • /
    • pp.24-31
    • /
    • 2004
  • This study was initiated to evaluate the efficiencies of DEPHANOX and Modified-DEPHANOX, which were devoloped to enhance nitrogen removal efficiency in municipal wastewater treatment. In the results, removal efficiency of organic matters was not affected much by increased loading rate of organic matters which is contained in influent. The nitrogen removal efficiencies according to the loading rate of influent TN was decreased drastically in conditions of over $0.2kg/m^3{\cdot}day$, which is T-N loading rate, and the DEPHANOX process was affected more sensitively than the M-DEPHANOX was. When the temperature was altered from $25^{\circ}C$ to $16^{\circ}C$ at HRT 6hrs, the removal efficiency of ammonia nitrogen was still over 90% and it was concluded that both DEPHANOX and M-DEPHANOX were strong enough to endure temperature variation. Moreover, both processes showed over 90% in ammonia removal efficiencies in over HRT 5hrs, so it was concluded that they were strong in HRT variation. M-DEPHANOX process showed a higher value than DEPHANOX did in T-N removal efficiency to the extent of 4~21 %, which resulted from differency of denitrification rates and the biosorption efficiency of organic matter in both processes. In the condition of HRT less than 4hrs, concentrations of ammonia nitrogen contained in effluents and nitrification reactors, might be sensitively affected by biosorption efficiency of organic matters in first separation tank. In the effect of effluent nitrate concentration in phosphorus removal, the more effluent nitrate concentration was decreased, the more phosphorus removal efficiency was increased. This result is related to the decrease of concentration of effluent nitrate which resulted from nitrification inhibition by decreased HRT.

발효된 1차 침전슬러지를 공급하여 간헐폭기조를 이용한 도시하수의 영양염류 처리 (Removal of Nutrients from Domestic Wastewater Using Intermittently Aerated Activated Sludge Systems Supplemented with Fermented Settled Sludge)

  • 원성연;이상일
    • 한국물환경학회지
    • /
    • 제20권1호
    • /
    • pp.18-23
    • /
    • 2004
  • In this research, a 2-stage intermittently aerated activated sludge system(IA) and intermittently aerated dynamic flow activated sludge system(DF) were investigated for the removal of nutrients in domestic wastewater. Wastewater was characterized by low C/N( organics/nitrogen) ratio. $COD_{cr}$, $BOD_s$, TKN and TP concentrations of domestic wastewater were 235, 47, 32 and 5.4 mg/L, respectively. Three sets of IA and one set of DF were operated. Three of four systems were added with fermented settled sludge taken from primary settling tank as an external electron donor and the other(IA) for control reactor was operated without addition of electron donor. All systems were operated at same sludge retention time of 20 days and hydraulic retention time of 12hrs. The supplemental electron donor was supplied into the anoxic mode. A higher denitrification rate was observed from the reactors with fermented settled sludge as an electron donor for denitrification compared to that of without addition of organic source. The result of this study indicates that the settled primary sludge, if the fermented at the acid stage, was an excellent electron donor for denitrification. 81 % of TN and 80% of TP were removed from the systems with the supplemental organic source added. However, the control reactor without addition of electron donor showed only 39% of TN and 43% of TP.

전북 정읍지역 젖소농장 결핵병 집단 발생에 대한 역학조사 (Investigation on an epidemic of tuberculosis in dairy cattle farms In Jeongeup, Korea)

  • 윤하정;문운경;김연주;조범준;이수두;이정원;이상진
    • 대한수의학회지
    • /
    • 제49권4호
    • /
    • pp.309-317
    • /
    • 2009
  • The present study describes an investigation on an epidemic of Tuberculosis (TB) which has been occurred among dairy cattle farms in Jeongeup, Jeollabuk-do since 2007. The investigation was performed in three ways as follows: 1. Collecting information about bovine TB outbreaks using investigation reports, an on-the-spot and tracing-back investigations; 2. Analyzing the outbreak pattern; 3. Establishing hypothesis and performing statistical analysis on potential risk factors. In the early 2000s, TB outbreaks were sporadically reported in beef cattle, and only a small number ($1{\sim}2$) of reactors was confirmed in each of outbreak farms. The number of TB outbreaks has been suddenly increased from 2007, mainly in dairy cattle farms. And these outbreaks were temporarily clustered during the period, from March 2007 to April 2009 (relative risk, RR = 13.7, p < 0.001). And two spatial clusters of which radiuses were 0.3 km (RR = 6.9, p < 0.001) and 0.9 km (RR = 3.6, p < 0.01). The analysis to find risk factors was performed on 99 dairy farms (21 outbreaks), which are located in the most seriously affected village during 2007-2009. Middleman (odds ratio, OR = 47.4, p < 0.05) and raw milk collecting system (OR = 6.9, p < 0.05) were recognized as with the highest association. Considering the fact that all the outbreak farms except one had their own manure composting tank, it might be that the manure containing pathogen was leaked from tank and transmitted to other farms by fomites such as middleman or raw milk collecting system.

음식물 탈리액 처리를 위한 파일럿 규모의 막결합형 2상 혐기성 소화 공정 가능성 평가 (A feasibility study of a pilot scale two-phase anaerobic digestion with ultra filtration for the treatment of garbage leachate)

  • 이은영;허안희;김형국;김희준;배재호
    • 상하수도학회지
    • /
    • 제23권5호
    • /
    • pp.539-545
    • /
    • 2009
  • A feasibility of a pilot scale two-phase anaerobic digestion with ultra filtration system treating garbage leachate were evaluated. The treatment system consisted of a thermophilic acidogenic reactor, a mesophilic methanogenic reactor, and an UF membrane. The average COD removal efficiency of the treatment system was 95% up to the OLR of 3.1 g COD/L/d. The higher COD removal efficiency with membrane unit resulted from the removal of some portion of soluble organics by membrane as well as particulate materials. When the membrane unit was in operation, bulk liquid in acidogenic and methanogenic reactors was partially interchanged, which maintained the acidogenic reactor pH over 5.0 without external chemical addition. Also, with the production of methane in the acidogenic reactor, the organic loading rate of the methanogenic reactor reduced. The initial flux of the membrane unit was $50{\sim}60L/m^2/hr$, but decreased to $5 L/m^2/hr$ after 95 days of operation due to clogging caused by particulate materials such as fibrous materials in garbage leachate. To prevent clogging caused by particulate materials, a pretreatment system such as screening is required. With the improvement with membrane unit operation, the two-phase anaerobic digestion with ultra filtration system is expected to have the possibility of treating garbage leachate.

생물학적 질소제거시 운전조건의 변화가 N2O 발생에 미치는 영향 (Effects of Operational Condition on N2O Production from Biological Nitrogen Removal Process)

  • 장현섭;김태형;이명주;황선진
    • 상하수도학회지
    • /
    • 제23권5호
    • /
    • pp.547-555
    • /
    • 2009
  • The objectives of this research were focused on the effects of various operating parameters on nitrous oxide emission such as C/N ratio, ammonia concentration and HRT in the hybrid and suspension reactors. With the decreasing of C/N ratios, $N_2O$ emission rates in the both processes were increased because organic carbon source for denitrification was depleted. In case of biofilm reactor operated using medium, $N_2O$ release from the nitrification was not affected by the variation of ammonia concentration. But in the suspension reactor, $N_2O$ production from the nitrification was rapidly increased with the increase of ammonia. Nitrite accumulation caused by undesirable nitrification conditions could be a important reason for the increase in the $N_2O$ production from the aerobic reactor. And rapid increase in $N_2O$ production was reflected by the decrease of HRT, similar to the results observed in the results of ammonia loading changes. So it could be said that it is very important to put in consideration both its optimum conditions for wastewater treatment efficiency and suitable conditions for $N_2O$ diminish, simultaneously, in order to development an eco-friendly and advanced wastewater treatment, especially in BNR process.

해외원전 비계획적 방출 및 한국의 환경감시 현황 분석 (Review of Unplanned Release at Foreign Nuclear Power Plants and Radiological Monitoring at Korean Power Plants)

  • 박수찬;함박눈;권장순;조동건;정지혜;권만재
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제23권4호
    • /
    • pp.1-15
    • /
    • 2018
  • Despite of safety issues related to radiological hazards, 31 countries around the world are operating more than 450 nuclear power plants (NPPs). To operate NPPs safely, safety regulations from radiation protection organizations were developed and adopted in many countries. However, many cases of radionuclide releases at foreign NPPs have been reported. Almost all commercial NPPs routinely release radioactive materials to the surrounding environments as liquid and gas phases under control. These releases are called 'planned releases' which are planned, regularly monitored, and well documented. Meanwhile, the releases focused in this review, called 'unplanned releases', are neither planned nor monitored by regulatory and/or protection organizations. NPPs are generally composed of various structures, systems and components (SSCs) for safety. Among them, the SSCs near reactors are closely related to safety of NPPs, and typically fabricated to comply with stringent requirements. However, some non-safety related SSCs such as underground pipes may be constructed only according to commercial standards, causing the leakage of radioactive fluids usually containing tritium ($^3H$). This paper discusses SSCs of NPPs and introduces several cases of unplanned releases at foreign NPPs. The current regulation on the environmental radiological surveillance and assessment around the NPPs in South Korea are also examined.

Biological Nitrogen Removal System의 세균 군집 분석 (Structure of Bacterial Communities in Biological Nitrogen Removal System)

  • 김경미;이상일;이동훈
    • 미생물학회지
    • /
    • 제42권1호
    • /
    • pp.26-33
    • /
    • 2006
  • 생물학적 질소 제거(Biological nitrogen removal; BNR) 시스템의 효율적인 처리 공정을 이재하기 위하여 질산화 반응조 내 세균 군집 구조를 16S rRNA 유전자의 PCR 및 terminal restriction fragment length polymorphism (T-RELP)방법을 이용하여 분석하였다. 본 연구에서 사용한 BNR 시스템은 국내에서 비교적 많이 적용되고 있는 부상여재를 이용한 고도처리 시스템, Nutrient Removal Laboratory 시스템, 반추기법을 이용한 영양염류 처리 Sequencing Batch Reactor (SBR)시스템이었고, 실험 결과 모든 시료에서 암모니아 산화 세균과 $\beta-proteobacteria$에 해당되는 말단 단편을 확인할 수 있었다. 암모니아 산화세균 군집에서 유래된 말단 단편의 염기서열을 분석한 결과 SBR공정에서는 Nitrosomonas와 Nitrosolobus에 속하는 군집 이 우점종임을 확인할 수 있었다. 그러나 다른 두 공정들에서는 $\beta-proteobacteria$에 속하는 미배양 균주와 Cardococcus australiensis와 염기서열 유사도가 높은 군집이 우점하였다. 또한, 암모니아산화 세균군집을 분석한 결과, SBR 공정이 암모니아 산화세균의 농화 배양에 가장 효과적인 것으로 나타났다. 이러한 결과는 각 BNR 시스템에 동일한 폐수가 유입되었음에도 불구하고 서로 다른 세균 군집 구조를 형성하고 있음을 의미한다.