• 제목/요약/키워드: reactors

검색결과 1,806건 처리시간 0.025초

팽화재로서의 볏짚이 음식물쓰레기의 호기성 퇴비화에 미치는 영향 (Effects of Rice Straw as Bulking Materials on Aerobic Composting of Food Wastes)

  • 박석환
    • 한국환경보건학회지
    • /
    • 제28권2호
    • /
    • pp.141-148
    • /
    • 2002
  • This study was performed to examine the effects of rice straw as bulking materials on temperature, pH, weight and volume reduction, porosity, C/N ratio, salinity, and conductivity in aerobic composting of food wastes. Volume ratios of food wastes to rice straw in reactor control, RS-1, RS-2, RS-2 and RS-4 were 4:0, 4:1. 4:2. 4:3 and 4:4, respectively. Reactors were operated for 24days with 1 hour stirring by lrpm and 2hours aeration per day. The values of pH of food wastes and rice straw were 4.39 and 7.4, respectively. The lowering of the volume ratio of food wastes to rice straw resulted in the high reaction temperature and the fast weight and volume reduction rates. C/N ratio in control was larger than that in rice straw containing reactors. Salinity and conductivity in reactors were condensed and increased by reaction days.

Prediction of the Turbulent Mixing in Bare Rod Bundles

  • Kim, Sin;Chung, Bum-Jin
    • Nuclear Engineering and Technology
    • /
    • 제31권1호
    • /
    • pp.104-115
    • /
    • 1999
  • The turbulent mixing rate is a very important variable in the thermal-hydraulic design of nuclear reactors. In this study, the turbulent mixing rate the fluid flows through rod bundles is estimated with the scale analysis on the flow pulsation phenomenon. Based upon the assumption that the turbulent mixing is composed of molecular motion, isotropic turbulent motion (turbulent motion without the flow pulsation), and How pulsation, the scale relation for the mixing is derived as a function of P/D, Re, and Pr. The derived scale relation is compared with published experimental results and shows good agreements. Since the scale relation is applicable to various Prandtl number fluid flows, it is expected to be useful for the thermal-hydraulic analysis of liquid metal coolant reactors as well as of moderate Prandtl number coolant reactors.

  • PDF

LINEAR PROGRAMMING OPTIMIZATION OF NUCLEAR ENERGY STRATEGY WITH SODIUM-COOLED FAST REACTORS

  • Lee, Je-Whan;Jeong, Yong-Hoon;Chang, Yoon-Il;Chang, Soon-Heung
    • Nuclear Engineering and Technology
    • /
    • 제43권4호
    • /
    • pp.383-390
    • /
    • 2011
  • Nuclear power has become an essential part of electricity generation to meet the continuous growth of electricity demand. A Sodium-cooled Fast Reactor (SFR) was developed to extend uranium resource utilization under a growing nuclear energy scenario while concomitantly providing a nuclear waste management solution. Key questions in this scenario are when to introduce SFRs and how many reactors should be introduced. In this study, a methodology using Linear Programming is employed in order to quantify an optimized growth pattern of a nuclear energy system comprising light water reactors and SFRs. The optimization involves tradeoffs between SFR capital cost premiums and the total system U3O8 price premiums. Optimum nuclear growth patterns for several scenarios are presented, as well as sensitivity analyses of important input parameters.

APPLICATION OF STABLE EMULSIONS TO LIPASE IMMOBILISED MEMBRANE REACTORS FOR KINETIC RESOLUTION OF RACEMIC ESTERS

  • Giorno, Lidietta;Na, Li;Drioli, Enrico
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2003년도 The 4th Korea-Italy Workshop
    • /
    • pp.65-68
    • /
    • 2003
  • The paper discusses the use of stable emulsion, prepared by membrane emulsification technology, to improve the enantiocatalytic performance of immobilised lipase in multiphasic membrane reactors. The production of optical pure (S)-naproxen from racemic naproxen methyl ester has been used as model reaction system. The enzyme was immobilised in the sponge layer (shell side) of capillary polyamide membrane with 50 kDa cut-off, The O/W emulsion, containing the substrate in the organic dispersed phase, was fed to the enzyme membrane reactor from shell-to-lumen. The results evidenced that lipase maintained stable activity during all the operation time (more than 250 hours), showing an enantiomeric excess (96 $\pm$2%) comparable to the free enzyme (98 $\pm$ 1%) and much higher compared to similar lipase-loaded membrane reactors used in two-separate phase systems (90%). The study showed that immobilised enzymes can achieve high stability as well as high catalytic activity and enantioselectivity.

  • PDF

Control of Parallel Connected Three-Phase PWM Converters without Inter-Module Reactors

  • Jassim, Bassim M.H.;Zahawi, Bashar;Atkinson, David J.
    • Journal of Power Electronics
    • /
    • 제15권1호
    • /
    • pp.116-122
    • /
    • 2015
  • This paper presents a new current sharing control strategy for parallel-connected, synchronised three-phase DC-AC converters employing space vector pulse width modulation (SVPWM) without current sharing reactors. Unlike conventional control methods, the proposed method breaks the paths of the circulating current by dividing the switching cycle evenly between parallel connected equally rated converters. Accordingly, any inter-module reactors or circulating current control will be redundant, leading to reductions in system costs, size, and control algorithm complexity. Each converter in the new scheme employs a synchronous dq current regulator that uses only local information to attain a desired converter current. A stability analysis of the current controller is included together with a simulation of the converter and load current waveforms. Experimental results from a 2.5kVA test rig are included to verify the proposed control method.

The ROK Nuclear Power Programme -Some Aspects of Radioactive Waste Management in the Nuclear Fuel Cycle-

  • West, P.J.
    • Nuclear Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.194-213
    • /
    • 1980
  • The paper describes and quantifies the wastes arising in the nuclear fuel cycle for Light Water Reactors, Heavy Water Reactors and Fast Breeder Reactors. The management and disposal technologies are indicated, together with their environmental impacts. Both once-through and uranium-plutonium recycle systems are evaluated, and comparisons are made on the basis of tingle reference technologies for waste management, and for one gigawatt/year of electricity generation. Environmental impacts are assessed, particularly that of health and safety, and a reference costing system is applied purely as a basis for comparing the fuel cycles. From this study it call be concluded generally that the relative differences of the impacts of waste management and disposal between the selected fuel cycles are not decisive factors in choosing a fuel cycle. Employing the technologies assumed, the radioactive wastes from any of the fuel cycles studied can be managed and disposed of with a high degree of safety and without undue risk to man or the environment. The cost of waste management and disposal is only a few percent of the value of the electricity generated and does not vary greatly between fuel cycles.

  • PDF

Two-fluid equations for two-phase flows in moving systems

  • Kim, Byoung Jae;Kim, Myung Ho;Lee, Seung Wook;Kim, Kyung Doo
    • Nuclear Engineering and Technology
    • /
    • 제51권6호
    • /
    • pp.1504-1513
    • /
    • 2019
  • Recently, ocean nuclear reactors have received attention due to enhanced safety features. The movable and transportable characteristics distinguish ocean nuclear reactors from land-based nuclear reactors. Therefore, for safety/design analysis of the ocean reactor, the thermos-hydraulics must be investigated in the moving system. However, there are no studies reporting the general two-fluid equations that can be used for multi-dimensional simulations of two-phase flows in moving systems. This study is to systematically formulate the multi-dimensional two-fluid equations in the non-inertial frame of reference. To demonstrate the applicability of the formulated equations, we perform a total of six different simulations in 2D tanks with translational and/or rotational motions.

Thermal hydraulic analysis of core flow bypass in a typical research reactor

  • Ibrahim, Said M.A.;El-Morshedy, Salah El-Din;Abdelmaksoud, Abdelfatah
    • Nuclear Engineering and Technology
    • /
    • 제51권1호
    • /
    • pp.54-59
    • /
    • 2019
  • The main objective of nuclear reactor safety is to maintain the nuclear fuel in a thermally safe condition with enough safety margins during normal operation and anticipated operational occurrences. In this research, core flow bypass is studied under the conditions of the unavailability of safety systems. As core bypass occurs, the core flow rate is assumed to decrease exponentially with a time constant of 25 s to new steady state values of 20, 40, 60, and 80% of the nominal core flow rate. The thermal hydraulic code PARET is used through these calculations. Reactor thermal hydraulic stability is reported for all cases of core flow bypass.

Beryllium oxide utilized in nuclear reactors: Part II, A systematic review of the neutron irradiation effects

  • Ming-dong Hou;Xiang-wen Zhou;Bing Liu
    • Nuclear Engineering and Technology
    • /
    • 제55권2호
    • /
    • pp.408-420
    • /
    • 2023
  • Beryllium oxide (BeO) is being re-emphasized and utilized in Micro Modular Reactors (MMR) because of its prominent nuclear and high temperature properties in recent years. The implications of the research about effects of neutron irradiation on the microstructure and properties of BeO are significant. This article comprehensively reviews the effects of neutron irradiation on BeO and proposes the maximum permissible neutron doses at different temperatures for BeO without cracks in appearance according to the data in the previous literature. This maximum permissible neutron dose value has important reference significance for the experimental study of BeO. The effects of neutron irradiation on the thermal conductivity and flexural strength of BeO are also discussed. In addition, microstructure evolution of irradiated BeO during post-irradiation annealing is summarized. This review article has important implications for the application of BeO in MMR.

An integrated risk-informed safety classification for unique research reactors

  • Jacek Kalowski;Karol Kowal
    • Nuclear Engineering and Technology
    • /
    • 제55권5호
    • /
    • pp.1814-1820
    • /
    • 2023
  • Safety classification of systems, structures, and components (SSC) is an essential activity for nuclear reactor design and operation. The current regulatory trend is to require risk-informed safety classification that considers first, the severity, but also the frequency of SSC failures. While safety classification for nuclear power plants is covered in many regulatory and scientific publications, research reactors received less attention. Research reactors are typically of lower power but, at the same time, are less standardized i.e., have more variability in the design, operational modes, and operating conditions. This makes them more challenging when considering safety classification. This work presents the Integrated Risk-Informed Safety Classification (IRISC) procedure which is a novel extension of the IAEA recommended process with dedicated probabilistic treatment of research reactor designs. The article provides the details of probabilistic analysis performed within safety classification process to a degree that is often missing in most literature on the topic. The article presents insight from the implementation of the procedure in the safety classification for the MARIA Research Reactor operated by the National Center for Nuclear Research in Poland.