• Title/Summary/Keyword: reactor internals

Search Result 121, Processing Time 0.024 seconds

Material degradation and its management of reactor internals in PWR (원자로 내부구조물 재료열화이력 및 관리방안)

  • Hwnag, Seong Sik;Kim, Sung Woo;Kim, Dong Jin;Choi, Min Jae;Lim, Yun Soo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • The number of nuclear power plants operating in Korea was 24 as of year 2015. Nine units out of 24 units have been operated for a period over 20 years. Kori unit 1 has been in operation for 40 years, and an extended operation for Wolsong unit 1 was decided in 2015. There has been reported some crackings in reactor internals in PWR have been reported in Europe, USA, Japan and Korea, and some of them were replaced with new one. Repair and replacement technologies for the reactor internals have been developing in order to meet the regulatory requirements for long term operation in Korea. The technologies will also be used for the exported nuclear units. It is required to review degradation history of the reactor internals worldwide as a part of the degradation management program development. Schematics of reactor internals designed and supplied by Westinghouse, Framatome and Combustion Engineering are described herein. Materials degradation history of reactor internals of PWR plants in USA, Japan and Europe is surveyed and summarized. Some events from Korean plants are also described. Aging management strategy for the internals is suggested.

Vibration and Stress Analysis for Reactor Vessel Internals of Advanced Power Reactor 1400 by Pulsation of Reactor Coolant Pump (원자로냉각재펌프 맥동에 대한 APR1400 원자로내부구조물의 진동 및 응력 해석)

  • Kim, Kyu-Hyung;Ko, Do-Young;Kim, Sung-Hwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.12
    • /
    • pp.1098-1103
    • /
    • 2011
  • The structural integrity of APR1400 reactor vessel internals has been being assessed referring the US Nuclear Regulatory Commission regulatory guide 1.20, comprehensive vibration assessment program. The program is composed of a vibration and stress analysis, a vibration and stress measurement, and an inspection. This paper covers the vibration and stress analysis on the reactor vessel internals by the pulsation of reactor coolant pump. 3-dimensional models to calculate the hydraulic loads and structural responses were built and the pressure distributions and the structural responses were predicted using ANSYS. This paper presents that APR1400 reactor vessel internals have enough structural integrity against the pulsation of reactor coolant pump as the peak stress of the reactor vessel internals is much lower than the acceptance limit.

Measurement of vibration and stress for APR-1400 reactor internals

  • Ko, Do-Young;Kim, Kyu-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.963-970
    • /
    • 2018
  • The U.S. Nuclear Regulatory Commission, Regulatory Guide 1.20 needs to perform a comprehensive vibration assessment program for reactor internals during preoperational and startup testing for nuclear power plants and extended power uprate. Although the measurement program is one of the core programs, it is rarely carried out except for a first-of-a-kind or a unique design. This article describes measurement results of vibration and stress for the comprehensive vibration assessment program for an APR-1400 reactor internals. The measurement was performed at an upper guide structure during the pre-core hot functional test of Shin Kori unit 4 reactor internals because the Shin Kori unit 3 and 4 are the first construction project for the APR-1400, and the upper guide structure assembly was to design change compared with the valid prototype. We confirmed that all measured results are within the test acceptance criteria. It means that the structural integrity of the APR-1400 reactor internals was secured for the flow-induced vibration.

Development of a new CVAP structural analysis methodology of APR1400 reactor internals using scaled model tests

  • Jongsung Moon;Inseong Jin;Doyoung Ko;Kyuhyung Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.309-316
    • /
    • 2024
  • The U.S. Nuclear Regulatory Commission (NRC) Regulatory Guide (RG) 1.20 provides guidance on the comprehensive vibration assessment program (CVAP) to be performed on reactor internals during preoperational and startup tests. The purpose of the program is to identify loads that could cause vibration in the reactor internals and to ensure that these vibrations do not affect their structural integrity. The structural vibrational analysis program involves creating finite element analysis models of the reactor internals and calculating their structural responses when subjected to vibration loads. The appropriateness of the structural analysis methodology must be demonstrated through benchmarks or any other reasonable means. Although existing structural analysis methodologies have been proven to be appropriate and are widely used, this paper presents the development of an improved new structural analysis methodology for APR1400 reactor internals using scaled model tests.

Modelling of RV Ledge Region for Dynamic Analysis of Coupled Reactor Vessel Internals and Core

  • Jhung, Myung J.
    • Nuclear Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.164-172
    • /
    • 1998
  • This paper presents the detailed modelling of reactor vessel ledge region for the dynamic analysis of the coupled internals and core model. The dynamic responses due to earthquake and pipe break are calculated using the input motions of reactor vessel taken from Ulchin nuclear power plant units 3 and 4. Two different representations for detailed and simplified models of the RV ledge region are made. The dynamic responses of the reactor internals components are compared between them. Response characteristics are reported and simplified model is suggested for earthquake and pipe break analysis for the future design of the reactor internals.

  • PDF

Hydraulic and Structural Analysis for APR1400 Reactor Vessel Internals against Hydraulic Load Induced by Turbulence

  • Kim, Kyu Hyung;Ko, Do Young;Kim, Tae Soon
    • International Journal of Safety
    • /
    • v.10 no.2
    • /
    • pp.1-5
    • /
    • 2011
  • The structural integrity assessment of APR1400 (Advanced Power Reactor 1400) reactor vessel internals has been being performed referring the US Nuclear Regulatory Commission regulatory guide 1.20 comprehensive vibration assessment program prior to commercial operation. The program is composed of a hydraulic and structural analysis, a vibration measurement, and an inspection. This paper describes the hydraulic and structural analysis on the reactor vessel internals due to hydraulic loads caused by the turbulence of reactor coolant. Three-dimensional models were built for the hydraulic and structural analysis and then hydraulic loads and structural responses were predicted for five analysis cases with CFX and ANSYS respectively. The structural responses show that the APR1400 reactor vessel internals have sufficient structural integrity in comparison with the acceptance criteria.

  • PDF

Numerical study on fluid flow by hydrodynamic loads in reactor internals

  • Kim, Da-Hye;Chang, Yoon-Suk;Jhung, Myung-Jo
    • Structural Engineering and Mechanics
    • /
    • v.51 no.6
    • /
    • pp.1005-1016
    • /
    • 2014
  • Roles of reactor internals are to support nuclear fuel, provide insertion and withdrawal channels of nuclear fuel control rods, and carry out core cooling. In case of functional loss of the reactor internals, it may lead to severe accidents caused by damage of nuclear fuel assembly and deterioration of reactor vessel due to attack of fallen out parts. The present study is to examine fluid flows in reactor internals subjected to hydrodynamic loads. In this context, an integrated model was developed and applied to two kinds of numerical analyses; one is to analyze periodic loading effect caused by pump pulsation and the other is to analyze random loading effect employing different turbulent models. Acoustic pressure distributions and flow velocity as well as pressure and temperature fields were calculated and compared to establish appropriate analysis techniques.

Flow Induced Vibration of Reactor Internals Structure : Analysis and Experiment (원자로 내부구조물의 유체흐름에 의한 진동 - 해석 및 실험)

  • Rhee, Hui-Nam;Choi, Suhn;Kim, Tae-Hyung;Hwang, Jong-Keun;Kim, Jung-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.201-207
    • /
    • 1995
  • A series of vibration assessment programs has been performed for Yonggwang Nuclear Power Plant Unit 4 (YGN 4) in order to verify the structural integrity of the reactor internals for flow induced vibration prior to its commercial operation. The structural analysis was done to provide the basis for measurement and the theoretical evidence for the structural integrity of the reactor internals. The actual flow induced hydraulic loads and reactor internals vibration response data were measured and recorded during pre-core hot functional testing of the plant. Then, the measured data have been reduced and analyzed, and compared with the analysis results such as the frequency contents, stresses, strains and displacements. It is concluded that the structural analysis methodology performed for vibration response of the reactor internals due to the flow induced vibration is appropriately conservative, and also that the structural integrity of YGN 4 reactor internals to flow induced vibration is acceptable for long term operation.

  • PDF

Vibration and Stress Analysis for Reactor Vessel Internals of Advanced Power Reactor 1400 due to Pulsation of Reactor Coolant Pump (원자로냉각재펌프 맥동에 대한 APR1400 원자로내부구조물의 진동 및 응력 해석)

  • Kim, Kyu-Hyung;Ko, Do-Young;Kim, Sung-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.221-226
    • /
    • 2011
  • The structural integrity of APR1400 reactor vessel internals has been being assessed referring the US Nuclear Regulatory Commission regulatory guide 1.20 comprehensive vibration assessment program. The program is composed of a vibration and stress analysis, a limited vibration measurement, and an inspection. This paper covers the vibration and stress analysis on the reactor vessel internals due to the pulsation of reactor coolant pump. 3-dimensional models to calculate the hydraulic loads and structural responses were built and the pressure distributions and the structural responses were predicted using ANSYS. The peak stress of the reactor vessel internals is much lower than the acceptance limit.

  • PDF

Investigation of seismic responses of reactor vessel and internals for beyond-design basis earthquake using elasto-plastic time history analysis

  • Lee, Sang-Jeong;Lee, Eun-ho;Lee, Changkyun;Park, No-Cheol;Choi, Youngin;Oh, Changsik
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.988-1003
    • /
    • 2021
  • Existing elastic analysis methods cannot be adhered to in order to assess the structural integrity of a reactor vessel and internals for a beyond design basis earthquake. Elasto-plastic analysis methods are required, and the factors that affect the elasto-plastic behavior of reactor materials should be taken into account. In this study, a material behavior model was developed that considers the irradiation embrittlement effect, which affects the elasto-plastic behavior of the reactor material. This was used to perform the elasto-plastic time history analyses of the reactor vessel and its internals for beyond design basis earthquake. For this investigation, appropriate beyond design basis earthquakes and reliable finite element models were used. Based on the analysis results, consideration was given to the load reduction effect and the margin change. These were transferred to the internals due to the plastic deformation of the reactor vessel.