• Title/Summary/Keyword: reactor design parameters

Search Result 244, Processing Time 0.027 seconds

Conceptual Design for Accelerator-Driven Sodium-Cooled Sub-critical Transmutation Reactors using Scale Laws and Integrated Code System

  • Lee, Kwang-Gu;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.660-665
    • /
    • 1998
  • The feasibility study on conceptual design methodology for accelerator-driven sodium-cooled sub-critical transmutation reactors has been conducted to optimize the design parameters from the scale laws and validates reactor performance with the integrated code system. A 1000 MWth sodium-cooled sub-critical transmutation reactor has been scale and verified through the methodology in this paper, which is referred to advanced Liquid Metal Reactor (ALMR). a Pb-Bi target material and a partitioned fuel are the liquid phases, and they are cooled by the circulation of secondary Pb-Bi coolant and by primary sodium coolant, respectively. Overall key design parameters are generated from the scale laws and they are improved and validated by the intergrated code system. Intergrated Code System (ICS) consist of LAHET, HMCNP, ORIGEN2, and COMMIX codes and some files. Through ICS the target region, the core region, and thermal-hydraulic related are analyzed once-through. Results of conceptual design are attached in this paper.

  • PDF

New design of variable structure control based on lightning search algorithm for nuclear reactor power system considering load-following operation

  • Elsisi, M.;Abdelfattah, H.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.544-551
    • /
    • 2020
  • Reactor control is a standout amongst the most vital issues in the nuclear power plant. In this paper, the optimal design of variable structure controller (VSC) based on the lightning search algorithm (LSA) is proposed for a nuclear reactor power system. The LSA is a new optimization algorithm. It is used to find the optimal parameters of the VSC instead of the trial and error method or experts of the designer. The proposed algorithm is used for the tuning of the feedback gains and the sliding equation gains of the VSC to prove a good performance. Furthermore, the parameters of the VSC are tuned by the genetic algorithm (GA). Simulation tests are carried out to verify the performance and robustness of the proposed LSA-based VSC compared with GA-based VSC. The results prove the high performance and the superiority of VSC based on LSA compared with VSC based on GA.

Code development on steady-state thermal-hydraulic for small modular natural circulation lead-based fast reactor

  • Zhao, Pengcheng;Liu, Zijing;Yu, Tao;Xie, Jinsen;Chen, Zhenping;Shen, Chong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2789-2802
    • /
    • 2020
  • Small Modular Reactors (SMRs) are attracting wide attention due to their outstanding performance, extensive studies have been carried out for lead-based fast reactors (LFRs) that cooled with Lead or Lead-bismuth (LBE), and small modular natural circulation LFR is one of the promising candidates for SMRs and LFRs development. One of the challenges for the design small modular natural circulation LFR is to master the natural circulation thermal-hydraulic performance in the reactor primary circuit, while the natural circulation characteristics is a coupled thermal-hydraulic problem of the core thermal power, the primary loop layout and the operating state of secondary cooling system etc. Thus, accurate predicting the natural circulation LFRs thermal-hydraulic features are highly required for conducting reactor operating condition evaluate and Thermal hydraulic design optimization. In this study, a thermal-hydraulic analysis code is developed for small modular natural circulation LFRs, which is based on several mathematical models for natural circulation originally. A small modular natural circulation LBE cooled fast reactor named URANUS developed by Korea is chosen to assess the code's capability. Comparisons are performed to demonstrate the accuracy of the code by the calculation results of MARS, and the key thermal-hydraulic parameters agree fairly well with the MARS ones. As a typical application case, steady-state analyses were conducted to have an assessment of thermal-hydraulic behavior under nominal condition, and several parameters affecting natural circulation were evaluated. What's more, two characteristics parameters that used to analyze natural circulation LFRs natural circulation capacity were established. The analyses show that the core thermal power, thermal center difference and flow resistance is the main factors affecting the reactor natural circulation. Improving the core thermal power, increasing the thermal center difference and decreasing the flow resistance can significantly increase the reactor mass flow rate. Characteristics parameters can be used to quickly evaluate the natural circulation capacity of natural circulation LFR under normal operating conditions.

Design of Reactor Head Structure Assembly Using Axiomatic Design (설계공리를 이용한 원자로상부구조물의 설계)

  • Choi, Woo-Seok;Lee, Gyu-Mahn;Kim, Tae-Wan;Kim, Jong-In
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.300-304
    • /
    • 2007
  • The reactor head structure assembly(RHSA) is the structure located on the reactor assembly. The purpose of the assembly is providing interface location for cables, preventing pipe whips, prohibiting instruments from becoming missiles, and restraining CEDMs' horizontal motion. On the RHSA, reactor disconnect panels(RDP) are installed. The installation location of RDP is to be decided to minimize the geometric interface with other components. Since the neighborhood of RHSA is crowded due to many connectors and cables, it is necessary to find the good design of RHSA to make an intricate situation attenuated and the required function maintained. The geometric shape and overall configuration of RHSA are determined by axiomatic design approach. The FRs of RHSA are specified and the corresponding DPs are found to satisfy FRs in sequence. The finite element analysis is carried out based on the result of the axiomatic design to evaluate the structural integrity.

  • PDF

Magnetic Core Reactor for DC Reactor type Three-Phase Fault Current Limiter

  • Kim, Jin-Sa;Bae, Duck-Kweon
    • International Journal of Safety
    • /
    • v.7 no.2
    • /
    • pp.7-11
    • /
    • 2008
  • In this paper, a Magnetic Core Reactor (MCR) which forms a part of the DC reactor type three-phase high-Tc superconducting fault current limiter (SFCL) has been developed. This SFCL is more economical than other types with three coils since it uses only one high-Tc superconducting (HTS) coil. When DC reactor type three-phase high-Tc SFCL is developed using just one coil, fewer power electronic devices and shorter HTS wire are needed. The SFCL proposed in this paper needs a power-linking device to connect the SFCL to the power system. The design concept for this device was sprang from the fact that the magnetic energy could be changed into the electrical energy and vice versa. Ferromagnetic material is used as a path of magnetic flux. When high-Tc superconducting DC reactor is separated from the power system by using SCRs, this device also limits fault current until the circuit breaker is opened. The device mentioned above was named Magnetic Core Reactor (MCR). MCR was designed to minimize the voltage drop and total losses. Majority of the design parameters was tuned through experiments with the design prototype. In the experiment, the current density of winding conductor was found to be $1.3\;A/mm^2$, voltage drop across MCR was 20 V and total losses on normal state was 1.3 kW.

Reactivity feedback effect on loss of flow accident in PWR

  • Foad, Basma;Abdel-Latif, Salwa H.;Takeda, Toshikazu
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1277-1288
    • /
    • 2018
  • In this work, the reactor kinetics capability is used to compute the design safety parameters in a PWR due to complete loss of coolant flow during protected and unprotected accidents. A thermal-hydraulic code coupled with a point reactor kinetic model are used for these calculations; where kinetics parameters have been developed from the neutronic SRAC code to provide inputs to RELAP5-3D code to calculate parameters related to safety and guarantee that they meet the regulatory requirements. In RELAP5-3D the reactivity feedback is computed by both separable and tabular models. The results show the importance of the reactivity feedback on calculating the power which is the key parameter that controls the clad and fuel temperatures to maintain them below their melting point and therefore prevent core melt. In addition, extending modeling capability from separable to tabular model has nonremarkable influence on calculated safety parameters.

Sensitivity study of parameters important to Molten Salt Reactor Safety

  • Sarah Elizabeth Creasman;Visura Pathirana;Ondrej Chvala
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1687-1707
    • /
    • 2023
  • This paper presents a molten salt reactor (MSR) design parameter sensitivity study using a nodal dynamic modelling methodology with explicitly modified point kinetics equation and Mann's model for heat transfer. Six parameters that can impact MSR safety are evaluated. A MATLAB-Simulink model inspired by Thorcon's 550MWth MSR is used for parameter evaluations. A safety envelope was formed to encapsulate power, maximum and minimum temperature, and temperature-induced reactivity feedback. The parameters are perturbed by ±30%. The parameters were then ranked by their subsequent impact on the considered safety envelope, which ranks acceptable parameter uncertainty. The model is openly available on GitHub.

The Study of Designing the Parameters of DC Reactor for Inductive Superconducting Fault Current Limiter By Using Finite Element Method (유한요소법을 이용한 유도형 고온 초전도 한류기용 DC Reactor의 설계 파라미터 결정법에 관한 연구)

  • 김용구;강형구;김태중;윤용수;고태국
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.326-329
    • /
    • 2002
  • The dc reactor type superconducting fault current limiter is composed of a power converter, magnetic core reactors and a do reactor that is a superconducting coil. When a fault occurs, the dc reactor maintains the stability of system by limiting its fault current. In this study, we focus on the design of the dc reactor using FEM(Finite Element Method). In order to design it, various elements should be considered such as magnetic field intensity, Lorentz's force, its inductance and so forth. Firstly, we forecast the values of those elements from the simulation of FEM and then measured with a copper wire magnet. Finally, verify the reliability of this FEM method by comparing with two results.

  • PDF

Optimum Radial Build of a Low Aspect Ratio Tokamak Reactor

  • Hong, B.G.;Hwang, Y.S.;Kang, J.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.397-397
    • /
    • 2011
  • In a low aspect ratio (LAR) tokamak reactor with a superconducting toroidal field (TF) coil, the radial build of TF coil and the shield play a key role in determining the size of a reactor. For self-consistent determination of the reactor components and physics parameters, a system analysis code is coupled with one-dimensional radiation transport code. Conceptual design study of a compact superconducting LAR tokamak reactor with aspect ratio less than 2.5 was conducted and the optimum radial build was identified. It is shown that the use of an improved shielding material and high temperature superconducting magnets with high critical current density opens up the possibility of a fusion power plant with compact size and small re-circulating power simultaneously at low aspect ratio, and that by using an inboard neutron reflector instead of breeding blanket, tritium self-sufficiency is possible with outboard blanket only and thus compact sized reactor is viable.

  • PDF

Hydraulic performance and flow resistance tests of various hydraulic parts for optimal design of a reactor coolant pump for a small modular reactor

  • Byeonggeon Bae;Jaeho Jung;Je Yong Yu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1181-1190
    • /
    • 2023
  • Hydraulic performance and flow resistance tests were performed to confirm the main parameters of the hydraulic instrumentation that can affect the pump performance of the reactor coolant pump. The flow resistance test offers important experimental data, which are necessary to predict the behavior of the primary coolant when the circulation of the reactor coolant pump is stopped. Moreover, the shape of the hydraulic section of the pump, which was considered in the test, was prepared to compare the mixed-flow- and axial-flow-type models, the difference in the number of blades of the impeller and diffuser, the difference in the shape of the impeller blade and its thickness, and the effect of coating at the suction bell. Additionally, five models of the hydraulic part were manufactured for the experiments. In this study, the differences in performance owing to the design factors were confirmed through the experimental results.