• Title/Summary/Keyword: reactor control

Search Result 1,198, Processing Time 0.029 seconds

Inspection of Calandria Reactor Area of Wolsung NPP using Thermal Infrared and CCD Images

  • Cho, Jai-Wan;Kim, Chang-Hoi;Seo, Yong-Chil;Park, Young-Soo;Kim, Seung-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.96.4-96
    • /
    • 2002
  • Thermal infrared imaging is a highly promising technology for condition monitoring and predictive maintenance of electronic, electrical and mechanical elements in nuclear power plants. However, conventional low-cost infrared imaging systems suffer from poor spatial resolution compared to commercial CCD cameras. This paper describes an approach to enhance inspection performances for calandria reactor area of Wolsung nuclear power plant through the technique of superimposing thermal infrared image into real CCD image. In the occurrence of thermal abnormalities on observation points and areas of calandria reactor area, unusual hot image taken from thermal infrared camera is mapped upon re...

  • PDF

Steady states and dynamic behavior of an LDPE autoclave reactor

  • Lee, Jin-Suk;Chang, Kil-Sang;Kim, Jae-Yeon;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.813-818
    • /
    • 1989
  • A two compartmented autoclave reactor for the polymerization of low density polyethylene is analyzed with respect to the effects of heat transfer and operation variables. Each compartment being considered as a completely mixed cell, two CSTRs model is proposed. The system shows various multiplicity features of steady state and periodic oscillatory motions. Heat removal efficiency and initiator supplement appear to have significant effect on the conversion of monomer with the temperature properly maintained, which should be taken into account in the reactor design.

  • PDF

The Effect of 2-Step Control of Anaerobic Fermentation for Maximum Methane Production of Swine Wastes (돈분을 이용한 혐기발효시 최대의 메탄생성을 위한 2단계 제어의 효과)

  • 김범석;이상락;맹원재
    • Journal of Animal Environmental Science
    • /
    • v.4 no.2
    • /
    • pp.175-182
    • /
    • 1998
  • For the recycling of swine takes 2 different steps in fermenting procedure, acidogenic reactor and methanogenic reactor, the activity of involved microbes can be maintained at the maximum level. This study showed applying 2 separate steps in anaerobic fermentation has improved fermenting efficiency over the conventional 1 step fermentation. Accordingly, the results are coincident with the hypothesis in which 2 steps acidogenic and methanogenic reactor fermentation is more efficient than conventional (1 step) fermentation that makes poisonous materials be obviate and abate. And the results also get the effective performance in the production of methane gas.

  • PDF

Dynamic characteristics of a CSTR with MMA polymerization

  • Ahn, Jong-Pil;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.100-105
    • /
    • 1992
  • A mathematical model is developed for a CSTR in which free radical solution polymerization of methyl methacrylate(MMA) takes place. It turns out that five ordinary differential equations are to be treated simultaneously in order to predict the reactor performance. Although the reaction proceeds under the conditions of relatively low temperature and pressure, the system shows very complex bifurcation features due to the diffusion limitation (gel effect) and the temperature dependence of the kinetic parameters and physical properties. The effects of various system parameters on the reactor performance as well as on the polymer properties are investigated by using the bifurcation analysis. The application of the singularity theory enables us to divide the parameter space into several different regions, in each of which the system takes a unique steady state structure. Under certain circumstances, complex dynamic features such as HB points and limit cycles are observed and these should be taken into consideration in the reactor design.

  • PDF

Fabrication and Characteristics of Thin-film Neutron Thermopile for Reactor Instrumentation (원자로계측을 위한 박막중성자열전대의 시작 및 특성)

  • 김동훈
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.9 no.5
    • /
    • pp.1-5
    • /
    • 1972
  • In order to improve the response time of nelltron theromopile for reactor control a neutron thermopile made use of a vacuunl evaporated thin film thor mocouple was fablicated and tested. The test results were compared with a wire-type neutron thermopile. Good linearities between the response of the neutron thermopile and the thermal flux has been shown in the ranges from n/$\textrm{cm}^2$/sec. Thermal neutron flux distributions in the core of TRIGA Mark-II reactor were measured using the fabricated neutron thermopile, and the results were conpared with data obtained by the acrivatin foil measurement.

  • PDF

MODELING AND OPTIMIZATION Of A FIXED-BED CATALYTIC REACTOR FOR PARTIAL OXIDATION OF PROPYLENE TO ACROLEIN

  • Lee, Ho-Woo;Ha, Kyoung-Su;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.451-451
    • /
    • 2000
  • This study aims for the optimization of process conditions in a fixed-bed catalytic reactor system with a circulating molten salt bath, in which partial oxidation of propylene to acrolein takes place. Two-dimensional pseudo-homogeneous model is adopted with estimation of suitable parameters and its validity is corroborated by comparing simulation result with experimental data. The temperature of the molten salt and the feed composition are found to exercise significant influence on the yield of acrolein and the magnitude of hot spot. The temperature of the molten salt is usually kept constant. This study, however, suggests that the temperature of the molten salt must be axially adjusted so that the abrupt peak of hot spot should not appear near the reactor entrance. The yield of acrolein is maximized and the position and the magnitude of hot spot are optimized by the method of the iterative dynamic programming (IDP).

  • PDF

Dynamic Characteristics of the Integral Reactor SMART

  • Kim, Tae-Wan;Park, Keun-Bae;Jeong, Kyeong-Hoon;Lee, Gyu-Mahn;Park, Suhn
    • Nuclear Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.111-120
    • /
    • 2001
  • In this study, a dynamic analysis of the integral reactor SMART (System-integrated Modular Advanced ReacTor) under postulated seismic events is performed to review the response characteristics of the major components. To enhance the feasibility of an analysis model, a detailed finite element model is synchronized with the products of concurrent design activities. The artificial time history, which has been applied to the seismic analysis for the Korean Standard Nuclear Power Plant (KSNP), is chosen to envelop broad site specifics in Korea. Responses in the horizontal direction are found slightly amplified, while those in the vertical direction are suppressed. Since amplified response is monitored at the control element drive mechanism (CEDM), minor design provision is considered to enhance the integrity of the subsystem.

  • PDF

Assessment of Nuclear Characteristics of NAA #1 Irradiation Hole in HANARO Research Reactor for Application of the $K_0$-NAA Methodology

  • Moon, Jong-Hwa;Kim, Sun-Ha;Chung, Yong-Sam;Dung, Ho-Mahn
    • Nuclear Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.566-573
    • /
    • 2002
  • Neutron activation analysis based on $textsc{k}$$_{o}$-standardization method# ($textsc{k}$o-NAA) is Com as one of the most remarkable progresses of the NAA with advantages of experimental simplicity, high accuracy, excellent flexibility with respect to irradiation and counting conditions, and suitability for computerization. This study was carried out to determine the reactor neutron spectrum parameters, i.e. $\alpha$ and f as the main factors of irradiation quality at NAA #1 irradiation hole on HANARO research reactor, to evaluate peak detection efficiency of the gamma-ray spectrometer for the use in the $textsc{k}$$_{o}$ experiments and to compare the measured concentration results with the certified values of some SRMs applying the experimentally determined to-parameters.ers.

ELECTROCHEMICAL PROCESSING OF USED NUCLEAR FUEL

  • Goff, K.M.;Wass, J.C.;Marsden, K.C.;Teske, G.M.
    • Nuclear Engineering and Technology
    • /
    • v.43 no.4
    • /
    • pp.335-342
    • /
    • 2011
  • As part of the Department of Energy's Fuel Cycle Research and Development Program an electrochemical technology employing molten salts is being developed for recycle of metallic fast reactor fuel and treatment of light water reactor oxide fuel to produce a feed for fast reactors. This technology has been deployed for treatment of used fuel from the Experimental Breeder Reactor II (EBR-II) in the Fuel Conditioning Facility, located at the Materials and Fuel Complex of Idaho National Laboratory. This process is based on dry (non-aqueous) technologies that have been developed and demonstrated since the 1960s. These technologies offer potential advantages compared to traditional aqueous separations including: compactness, resistance to radiation effects, criticality control benefits, compatibility with advanced fuel types, and ability to produce low purity products. This paper will summarize the status of electrochemical development and demonstration activities with used nuclear fuel, including preparation of associated high-level waste forms.

Improved reactor regulating system logical architecture using genetic algorithm

  • Shim, Hyo-Sub;Jung, Jae-Chun
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1696-1710
    • /
    • 2017
  • An improved Reactor Regulating System (RRS) logic architecture, which is combined with genetic algorithm (GA), is implemented in this work. It is devised to provide an optimal solution to the current RRS. The current system works desirably and has contributed to safe and stable nuclear power plant operation. However, during the ascent and descent section of the reactor power, the RRS output reveals a relatively high steady-state error, and the output also carries a considerable level of overshoot. In an attempt to consolidate conservatism and minimize the error, this work proposes to apply GA to RRS and suggests reconfiguring the system. Prior to the use of GA, reverse engineering is implemented to build a Simulink-based RRS model. Reengineering is followed to produce a newly configured RRS to generate an output that has a reduced steady-state error and diminished overshoot level. A full-scope APR1400 simulator is used to examine the dynamic behaviors of RRS and to build the RRS Simulink model.