• Title/Summary/Keyword: reactor control

Search Result 1,193, Processing Time 0.032 seconds

Design of Power Controller for Control Rod Drive Mechanism Control System (제어봉 구동장치 제어시스템용 전력함 설계)

  • Nam, J.H.;Lee, J.M.;Jung, S.H.;Shin, J.R.;Cheon, J.M.;Kim, C.K.;Kim, S.J.;Kweon, S.M.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2271-2273
    • /
    • 2003
  • Control Rod Control System(CRCS) is to control nuclear reaction of reactor by moving Control Rod Drive Mechanism(CRDM) with speed and direction signal from Reactor Regulating System(RRS). CRCS is made up of two parts : control cabinet and power cabinet. And this paper presents mainly power cabinet design for system reliability. To increase reliability of power cabinet, controller, power supply and communication line arc doubly designed and supervision and diagnosis function are applied.

  • PDF

APPLICATION OF BACKWARD DIFFERENTIATION FORMULA TO SPATIAL REACTOR KINETICS CALCULATION WITH ADAPTIVE TIME STEP CONTROL

  • Shim, Cheon-Bo;Jung, Yeon-Sang;Yoon, Joo-Il;Joo, Han-Gyu
    • Nuclear Engineering and Technology
    • /
    • v.43 no.6
    • /
    • pp.531-546
    • /
    • 2011
  • The backward differentiation formula (BDF) method is applied to a three-dimensional reactor kinetics calculation for efficient yet accurate transient analysis with adaptive time step control. The coarse mesh finite difference (CMFD) formulation is used for an efficient implementation of the BDF method that does not require excessive memory to store old information from previous time steps. An iterative scheme to update the nodal coupling coefficients through higher order local nodal solutions is established in order to make it possible to store only node average fluxes of the previous five time points. An adaptive time step control method is derived using two order solutions, the fifth and the fourth order BDF solutions, which provide an estimate of the solution error at the current time point. The performance of the BDF- and CMFD-based spatial kinetics calculation and the adaptive time step control scheme is examined with the NEACRP control rod ejection and rod withdrawal benchmark problems. The accuracy is first assessed by comparing the BDF-based results with those of the Crank-Nicholson method with an exponential transform. The effectiveness of the adaptive time step control is then assessed in terms of the possible computing time reduction in producing sufficiently accurate solutions that meet the desired solution fidelity.

Uncertainty quantification of the power control system of a small PWR with coolant temperature perturbation

  • Li, Xiaoyu;Li, Chuhao;Hu, Yang;Yu, Yongqi;Zeng, Wenjie;Wu, Haibiao
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2048-2054
    • /
    • 2022
  • The coolant temperature feedback coefficient is an important parameter of reactor core power control system. To study the coolant temperature feedback coefficient influence on the core power control system of small PWR, the core power control system is built with the nonlinear model and fuzzy control theory. Then, the uncertainty quantification method of reactor core parameters is established based on the Latin hypercube sampling method and the Bootstrap method. Finally, under the conditions of reactivity step perturbation and coolant inlet temperature step perturbation, uncertainty analysis for two cases is carried out. The result shows that with fuzzy controller and fuzzy PID controller, the uncertainty of the coolant temperature feedback coefficient affects the core power control system, and the maximum uncertainties of core relative power, coolant temperature deviation, fuel temperature deviation and total reactivity are acceptable.

Voltage Control Strategy of new 3-phase Line-Interactive UPS System using AC Line Reactor and Parallel-Series Active Filter (AC 라인 리액터와 병렬 및 직렬 능동필터를 가지는 새로운 3상 Line-Interactive UPS 시스템의 전압제어 방식)

  • Ji, Jun-Keun;Kim, Jang-Hwan;Sul, Seung-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.538-546
    • /
    • 2007
  • A new 3-phase line-interactive UPS(Uninterruptible Power Supply) system with parallel-series active power-line conditioning capability using AC line reactor and two four-leg PWM VSCs(Voltage Source Converters) was introduced recently. In this paper, the strategy of voltage control in suggested UPS system is explained. The objective of proposed voltage controllers in parallel(shunt) and series PWM VSC is to guarantee satisfactory characteristics in steady state and transient state. Therefore the experimental results to prototype UPS system having power rating of 60kVA is shown to prove the verification of voltage control strategy.

State Estimation and Property Control in an MMA-MA Copolymerization Reactor

  • Park, Myung-June;Hur, Su-Mi;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.97.3-97
    • /
    • 2001
  • An experimental study was performed to establish the validity of an on-line state estimator for a semibatch MMA-MA copolymerization reactor by using on-line densitometer and viscometer under two different operating conditions; one without additional solvent feed and the other with solvent fed additionally. A conventional extended Kalman filter (EKF) was used as the state estimator and the experiment was conducted for the purpose of application to the control of copolymer properties. Further analysis was made by using off-line measurement data for the mole fraction of MMA in the remaining monomers and the solid content. It was found that the EKF could provide a good estimate for the states of the copolymerzation system ...

  • PDF

Robust Reactor Power Control System Design by Genetic Algorithm

  • Lee, Yoon-Joon;Cho, Kyung-Ho;Kim, Sin
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.293-298
    • /
    • 1997
  • The H$_{\infty}$robust controller fur the reactor power control system is designed by use of the mixed weight sensitivity. The system is configured into the typical two-port model with which the weight functions are augmented. Since the solution depends on the weighting functions and the problem is of non-convex, the genetic algorithm is used to determine the weighting functions. The cost function applied in the genetic algorithm permits the direct control of the power tracking performances. In addition, the actual operating constraints such as rod velocity and acceleration can be treated as design parameters. Compared with the conventional approach, the controller designed by the genetic algorithm results in the better performances with the realistic constraints. Also, it is found that the genetic algorithm could be used as an effective tool in the robust design. robust design.

  • PDF

HUMAN RELIABILITY ASSESSMENT IN CONTEXT

  • HOLLNAGEL ERIK
    • Nuclear Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.159-166
    • /
    • 2005
  • Human reliability assessment (HRA) is conducted on the unspoken premise that 'human error' is a meaningful concept and that it can be associated with individual actions. The basis for this assumption it found in the origin of HRA, as a necessary extension of PSA to account for the impact of failures emanating from human actions. Although it was natural to model HRA on PSA, a large number of studies have shown that the premises are wrong, specifically that human and technological functions cannot be decomposed in the same manner. The general experience from accident studies also indicates that action failures are a function of the context, and that it is the variability of the context rather than the 'human error probability' that is the much sought for signal. Accepting this will have significant consequences for the way in which HRA, and ultimately also PSA, should be pursued.

A Study on the Design of the Motor Driving a Control-Rod for SMART (원자로 제어봉 구동용 전동기의 설계에 관한 연구)

  • Jeong, Y.H.;Kang, D.H.;Kim, J.M.;Im, T.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.714-716
    • /
    • 2000
  • In the System-integrated modular advanced reactor(SMART), the motor for Control element drive mechanism(CEDM) requires high density power and simple drive mechanism to reduce volume because of restriction by install-space and must satisfy the reactor operating circumstances with high pressure and temperature. In this paper, we perform the basic design of the two kinds (Variable reluctance type and Hibrid-reluctance type) of the transverse flux motor to develop the prototype motor for the control element drive mechanism of SMART. Analyzed these motors by the FEM in the 2-dimension, we show the characteristics for each of the analysis model.

  • PDF

Temperature Control for the Steam Reforming Reactor in 1kW PEMFC system (1kW 연료전지 시스템용 개질기 온도제어)

  • Shin, Bum-Su;Kim, Dong-Chan;Kong, Min-Seok;Choi, Dong-Min;Park, Yon-Goo
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3136-3139
    • /
    • 2008
  • The object of the paper is to design two PI controllers. One provides the stable target temperature to the steam reforming reactor in 1kW PEMFC system. The other controls burner to operate within a permissible range of temperature. Feedforward control is applied to obtain temperature stability against disturbances such as changes of operating condition resulted from load change. Step response tests show that these controller work well with an error tolerance of $5^{\circ}C$.

  • PDF

Development of the Controller for TFM with Contol-Rod (제어봉 구동장치용 횡자속형 전동기의 제어기 개발)

  • Kim J.M.;Jeong Y.H;Kang D.H.;Im T.Y.;Kim D.H.;Lee S.G.
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.284-287
    • /
    • 2001
  • In the System-integrated modular advanced reactor(SMART), the motor for Control element drive mechanism(CEDM) requires high density power and simple drive mechanism to reduce volume because of restriction by install-space and must satisfy the reactor operating circumstances with high pressure and temperature. To Maximize the characteristics of the TFM, we chose the asymmetric bridge converter as the driving system for TFM. Because two switching devices are connected in series with the stator winding of each phases in the asymmetric bridge converter all the phases are not affected by another phase but controlled independently. Also, this converter has many advantages that the various control methods can be adopted, it is easy to control, and that in case that the switching devices of a phase are damaged, the affects can be minimized.

  • PDF