• Title/Summary/Keyword: reactor

Search Result 9,109, Processing Time 0.034 seconds

Research and Development for Decontamination System of Spent Resin in Hanbit Nuclear Power Plant (한빛원전 폐수지 제염공정 개발연구)

  • Sung, Gi Hong
    • Journal of Radiation Industry
    • /
    • v.9 no.4
    • /
    • pp.217-221
    • /
    • 2015
  • When reactor coolant leaks occur due to cracks of a steam generator's tube, radioactive materials contained in the primary cooling water in nuclear power plant are forced out toward the secondary systems. At this time the secondary water purification resin in the ion exchange resin tower of the steam generator blowdown system is contaminated by the radioactivity of the leaked radioactive materials, so we pack this in special containers and store temporarily because we could not dispose it by ourselves. If steam generator tube leakage occurs, it produces contaminated spent resins annually about 5,000~7,000 liters. This may increase the amount of nuclear waste productions, a disposal working cost and a unit price of generating electricity in the plant. For this reasons, it is required to develop a decontamination process technique for reducing the radioactive level of these resins enough to handle by the self-disposal method. In this research, First, Investigated the structure and properties of the ion exchange resin used in a steam generator blowdown system. Second, Checked for a occurrence status of contaminated spent resin and a disposal technology. Third, identified the chemical characteristics of the waste radionuclides of the spent resin, and examined ionic bonding and separation mechanism of radioactive nuclear species and a spent resin. Finally, we carried out the decontamination experiment using chemicals, ultrasound, microbubbles, supercritical carbon dioxide to process these spent resin. In the case of the spent resin decontamination method using chemicals, the higher the concentration of the drug decontamination efficiency was higher. In the ultrasound method, foreign matter of the spent resin was removed and was found that the level of radioactivity is below of the MDA. In the microbubbles method, we found that the concentration of the radioactivity decreased after the experiment, so it can be used to the decontamination process of the spent resin. In supercritical carbon dioxide method, we found that it also had a high decontamination efficiency. According to the results of these experiments, almost all decontamination method had a high efficiency, but considering the amounts of the secondary waste productions and work environment of the nuclear power plant, we judged the ultrasound and supercritical carbon dioxide method are suitable for application to the plant and we established the plant applicable decontamination process system on the basis of these two methods.

Smart Synthetic Path Search System for Prevention of Hazardous Chemical Accidents and Analysis of Reaction Risk (반응 위험성분석 및 사고방지를 위한 스마트 합성경로 탐색시스템)

  • Jeong, Joonsoo;Kim, Chang Won;Kwak, Dongho;Shin, Dongil
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.781-789
    • /
    • 2019
  • There are frequent accidents by chemicals during laboratory experiments and pilot plant and reactor operations. It is necessary to find and comprehend relevant information to prevent accidents before starting synthesis experiments. In the process design stage, reaction information is also necessary to prevent runaway reactions. Although there are various sources available for synthesis information, including the Internet, it takes long time to search and is difficult to choose the right path because the substances used in each synthesis method are different. In order to solve these problems, we propose an intelligent synthetic path search system to help researchers shorten the search time for synthetic paths and identify hazardous intermediates that may exist on paths. The system proposed in this study automatically updates the database by collecting information existing on the Internet through Web scraping and crawling using Selenium, a Python package. Based on the depth-first search, the path search performs searches based on the target substance, distinguishes hazardous chemical grades and yields, etc., and suggests all synthetic paths within a defined limit of path steps. For the benefit of each research institution, researchers can register their private data and expand the database according to the format type. The system is being released as open source for free use. The system is expected to find a safer way and help prevent accidents by supporting researchers referring to the suggested paths.

Heterogeneous Photocatalytic Decomposition of Organics in Water Phase ($TiO_2$ 광촉매를 활용한 수용액 내의 유기물질의 광분해반응)

  • Lee, Tai-K.;Kim, Dong-H.;Kim, Kyung-N.;Auh, P. Chung-Moo
    • Solar Energy
    • /
    • v.15 no.2
    • /
    • pp.65-75
    • /
    • 1995
  • We have summarised some important aspects of our recent basic and applied studies in the area of photocatalytic detoxifcation with Degussa P25 titanium dioxide($TiO_2$) being the photocatalyst. Heterogeneousphotocatalytic decompositions of two components such as TCE-chloroform, TCE-phenol and TCE-benzene as well as single component organic, TCE, chloroform and $CCl_4$ were carried out to investigate the effect of additional compound on the TCE decomposition rate. In laboratory experiments, the optimum flow rate of TCE solution was $200cm^3/min$ with annular photoreactor in the presence of 0.1 wt% $TiO_2$ powder under illumination. It was observed that the second compound such as $CHCl_3$, phenol and benzene has a negative effect on the TCE decomposition rate. Result presented that TCE decomposition ratio was increased at low pH in the TCE-phenol two component solution. It could be shown that the photocatalytic reactor exhibits technical feasibility of detoxifying the multicomponent under proper experimental conditions.

  • PDF

Severe Accident Sequence Analysis - Part 1: Analysis of Postulated Core Meltdown Accident Initiated by Small Break LOCA in Kori-1 PWR Dry Containment (고리 1호기 소형파단 냉각제 상실사고에 의해 개시된 가상 노심용융 사고 해석)

  • Jong In Lee;Seung Hyuk Lee;Jin Soo Kim;Byung Hun Lee
    • Nuclear Engineering and Technology
    • /
    • v.16 no.3
    • /
    • pp.141-154
    • /
    • 1984
  • An analysis is presented of key phenomena and scenario which imply some general trends for beyond design-basis-accident in Kori-1 PWR dry containment. The study covers a wide range of severe accident sequences initiated by small break LOCA. The MARCH computer code, with KAERI modifications was used in this analysis. The major emphasis of the paper are two folds, 1) the phenomenologic understanding of severe accident and 2) a study of H2 combustion and debris/ water interactions in a specific small break LOCA for Kori-1 plant. The sensitivity studies for the specific plant data and thermal interaction modelings used in the SASA were performed. The results show that if hydrogen burning does occur at low concentration, the resulting peak pressure does not exceed the design value, while the lower concentration assumption results in repeated burning due to the continuing H$_2$ generation. For debris/water interaction, the particle size has no effect on the magnitude of peak pressure for the amount of water assumed to be in the reactor cavity. But, the occurrence of peak pressure is considerably delayed in case of using the dryout correlation. The peak containment pressure predicted from the hydrogen combustion and steam pressure spite during full core meltdown scenario does not present a severe threat to the containment integrity.

  • PDF

The Effect of Weld Line on the Mechanical Strengths and its Elimination Process in the Zr-4 Resistance Upset Welds (지르칼로이-4의 저항업셋용접에서 용접선이 기계적성질에 미치는 영향과 그 소멸과정)

  • Koh, Jin-Hyun;Lee, Jung-Won;Jung, Sung-Hoon
    • Nuclear Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.1-11
    • /
    • 1991
  • The objective of this study is to investigate the effect of weld line on the mechanical strengths and the process of weld line elimination in the Zircaloy-4 resistance upset welding for the fabrication of heavy water reactor fuel rods. The weld current and the amount of upset increased linearly with the main heat, in which two relations between them were derived. It was found that the threshold to obtain sound weld was 50% of main heat in terms of weld upset size, mechanical strengths and weld line elimination. The weld microstructure of resistance upset welds of Zircaloy-4 comprsied basketweave, Widmanstatten and martensite respectively by changing the main heats. Dimples on uniaxially fractured surface at weld line in the Zr-4 welds were larger and deeper compared with those on biaxially fractured surface. It was also found that the process of the weld line elimination in the resistance upset weld of Zircaloy-4 could be divided into three stages in terms of the presence of many pores, their shrinkage and elimination, and the shrinkage of the original weld interface with increasing weld currents.

  • PDF

The Relative Effectiveness of Various Radiation Sources on the Resistivity Change in n-Type Silicon

  • Jung, Wun
    • Nuclear Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.91-101
    • /
    • 1969
  • Resistivity changes of n-type float-zone silicon crystals with 6.4$\times$10$^{14}$ to 1.25$\times$10$^{17}$ phosphorus atoms/㎤ due to irradiation by (1) 1 MeV electrons, (2) two types of research reactors, and (3) $Co^{60}$ ${\gamma}$-ray sources were investigated. The results were analyzed on the basis of a simple exponential formula derived by Buehler. While the formula gave a fair fit in the low fluence range in most cases, the deviation was quite appreciable in the case of 1 MeV electron irradiation, and a linear change gave better fit in some cases. The large change in the carrier removal rate in electron-irradiated samples in the high fluence range was analyzed in detail in terms of the Fermi level cross-over of the defect levels. Based on the damage constants evaluated from the initial portion of data where the formula was applicable, the relative effectiveness of various radiation sources in causing the resistivity change in n-type silicon was compared. The TRIGA Mark II reactor neutrons, for example, were found to be about 40 times more effective than 1 MeV electrons. The dependence of the damage constant on the initial carrier concentration was also examined. The physical basis of the exponential law and the effect of the Fermi level cross-over of the defect levels on the resistivity change in the high fluence ranges are discussed.

  • PDF

Forced Flow Dryout Heat Flux in Heat Generating Debris Bed (열을 발생하는 Debris층에서의 강제대류 Dryout 열유속)

  • Cha, Jong-Hee;Chung, Moon-Ki
    • Nuclear Engineering and Technology
    • /
    • v.18 no.4
    • /
    • pp.273-280
    • /
    • 1986
  • The purpose of this study is to obtain the experimental data of the forced flow dryout heat flux in a heat generating debris bed which simulates the degraded nuclear reactor core after severe accident. An experimental investigation has been conducted of dryout heat flux in an inductively heated bed of steel particles with upward forced flow rising coolant circulation system under atmospheric pressure. The present observations were mainly focused on the effects of coolant mass flux, particle size, bed height, and coolant subcooling on the dryout heat flux The data were obtained when carbon steel particles in the size distribution 1.5, 2.5, 3.0 and 4.0 mm were placed in a 55 mm ID Pyrex glass column and inductively heated by passing radio frequency current through a multiturn work coil encircling the column. Distilled water was supplied with variation of mass flux from 0 to 3.5 kg/$\textrm{cm}^2$ s as a coolant in the tests, while the bed height was selected as 55 mm and 110 mm. Inlet temperature of coolant varied by 2$0^{\circ}C$ and 8$0^{\circ}C$. The principal results of the tests are: (1) Dryout heat flux increases with increase of upward forcing mass flux and particle size; (2) The dryout heat flux at the zero mass flux obviously depends on the Particle size as Previous studies; (3) The forced flow dryout heat flux in the shallow bed is somewhat higher than that in the deep bed,

  • PDF

HIGH HEAT FLUX TEST WITH HIP BONDED 35X35X3 BE/CU MOCKUPS FOR THE ITER BLANKET FIRST WALL

  • Lee, Dong-Won;Bae, Young-Dug;Kim, Suk-Kwon;Jung, Hyun-Kyu;Park, Jeong-Yong;Jeong, Yong-Hwan;Choi, Byung-Kwon;Kim, Byoung-Yoon
    • Nuclear Engineering and Technology
    • /
    • v.42 no.6
    • /
    • pp.662-669
    • /
    • 2010
  • To develop the manufacturing methods for the blanket first wall (FW) of the International Thermonuclear Experimental Reactor (ITER) and to verify the integrity of the joint, Be/Cu mockups were fabricated and tested at the KoHLT-1 (Korea Heat Load Test facility), a graphite heater facility located at the Korea Atomic Energy Research Institute (KAERI). Since Be and Cu joining is the focus of the present study, the fabricated mockups had a CuCrZr heat sink joined with three Be tiles as an armor material, unlike the original ITER blanket FW, which has a stainless steel structure and coolant tubes. Hot isostatic pressing (HIP) was carried out at $580^{\circ}C$ and 100 MPa for 2 hours as the method for Be/Cu joining. Three interlayers, namely, $1{\mu}mCr/10{\mu}mCu$, $1{\mu}mTi/0.5{\mu}mCr/10{\mu}mCu$, and $5{\mu}mTi/10{\mu}mCu$ were applied as a coating to the Be tiles by a physical vapor deposition (PVD) method. A shear test was performed with the specimens, which were fabricated by the same methods as those used to fabricate the mockups. The average values were 125 MPa to 180 MPa, and the samples with the $1{\mu}mCr/10{\mu}mCu$ interlayer showed the lowest value. No defect or delamination was found in the joints of the mockups by the developed ultrasonic test using a flat-type probe with a 10 MHz frequency and a 0.25 inch diameter. High heat flux (HHF) tests were performed at $1.0\;MW/m^2$ heat flux for each mockup using the given conditions, and the results were analyzed by ANSYS-CFX code. For the test criteria, an expected fatigue lifetime about 1,000 cycles was obtained by analysis with ANSYS-mechanical code. Mockups using the interlayers of $1{\mu}mTi/0.5{\mu}mCr/10{\mu}mCu$ and $5{\mu}mTi/10{\mu}mCu$ survived up to 1,100 cycles over the required number of cycles. However, one of the Be tiles in the other two mockups using the $1{\mu}mCr/10{\mu}mCu$ interlayer was detached during the screening test, and others were detached by discharge after 862 cycles. The integrity of the joints using the proposed interlayers was proven by the HHF test, but the other interlayer requires more study before it can be used for the joining of Be to Cu. Moreover, it was confirmed that the measured temperatures agreed well with the analysis temperatures, which were used to estimate the lifetime and that the developed facility showed its capability of the long time operation.

Removal of As(III) and Phenol by Multi-functional Property of Activated Carbon Impregnated With Manganese (망간첨착 활성탄의 다기능성을 이용한 3가 비소 및 페놀 제거)

  • Yu, Mok-Ryun;Hong, Soon-Chul;Yang, Jae-Kyu;Chang, Yoon-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.3
    • /
    • pp.52-58
    • /
    • 2008
  • Mn-impregnated activated carbon (Mn-AC) prepared at different conditions was applied in the treatment of synthetic wastewater containing both organic and inorganic contaminants. Phenol and As(III) was used as the representative organic and inorganic contaminants, respectively. After evaluation of the physicochemical characteristic and stability of Mn-AC, oxidation of As(III) as well as adsorption of phenol by activated carbon(AC) and Mn-AC were investigated in a batch reactor. To investigate the stability of Mn-AC, dissolution of Mn from each Mn-AC was measured pH ranging from 2 to 4. Although Mn-AC was unstable at a strong acidic condition, the dissoluted Mn was below 3 ppm at pH 4. XRD analysis of Mn-AC indicated that the mineral type of the impregnated manganese was $Mn_2O_3$. From the simultaneous treatment of As(III) and phenol by AC and Mn-AC, As(III) oxidation by Mn-AC was greater than that by AC at lower pH, while the reverse order was observed at higher pH. After impregnation of Mn onto AC, 13% decrease of the surface area was observed, causing 8% reduction of phenol removal. Considering removal properties of As(III) and phenol, Mn-AC could be applied in the simultaneous treatment of wastewater contaminated with multi-contaminants.

Isolation and Characterization of Sulfur-oxidizing Denitrifying Bacteria Utilizing Thiosulfate as an Electron Donor (황(thiosulfate)을 이용하는 탈질 미생물의 분리 및 특성 파악)

  • Oh, Sang-Eun;Joo, Jin-Ho;Yang, Jae E
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.6
    • /
    • pp.409-414
    • /
    • 2006
  • Sulfur-oxidizing bacteria were enumerated and isolated from a steady-state anaerobic master culture reactor (MCR) operated for over six months under a semi-continuous mode and nitrate-limiting conditions using thiosulfate as an electron donor. Most are Gram-negative bacteria, which have sizes up to 12 m. Strains AD1 and AD2 were isolated from the plate count agar (PCA), and strains BD1 and BD2 from the solid thiosulfate/nitrate medium. Based on the morphological, physiological, FAME and 16S rDNA sequence analyses, the two dominant strains, AD1 and AD2, were identified as Paracoccus denitrificans and Paracoccus versutus (formerly Thiobacillus versutus), respectively. From the physiological results, glucose was assimilated by both strains AD1 and AD2. Heterotrophic growth of strains AD1 and AD2 could be a more efficient way of obtaining a greater amount of biomass for use as an inoculum. Even though facultative autotrophic bacteria grow under heterotrophic conditions, autotrophic denitrification would not be reduced.