• 제목/요약/키워드: reactor

검색결과 9,112건 처리시간 0.028초

Electrodeposition of GMR Ni/Cu Multilayers in a Recirculating Electrochemical Flow Reactor

  • Rheem, Young-Woo
    • 한국재료학회지
    • /
    • 제20권2호
    • /
    • pp.90-96
    • /
    • 2010
  • The recirculating electrochemical flow reactor developed at UCLA has been employed to fabricate nanostructured GMR multilayers. For comparison, Ni/Cu multilayers have been electrodeposited from a single bath, from dual baths and from the recirculating electrochemical flow reactor. For a magnetic field of 1.5 kOe, higher GMR (Max. -5%) Ni/Cu multilayers with low electrical resistivity (< $10\;{\mu}{\Omega}{\cdot}cm$) were achieved by the electrochemical flow reactor system than by the dual bath (Max. GMR = -4.2% and < $20\;{\mu}{\Omega}{\cdot}cm$) or the single bath (Max. GMR = -2.1% and < $90\;{\mu}{\Omega}{\cdot}cm$) techniques. Higher GMR effects have been obtained by producing smoother, contiguous layers at lower current densities and by the elimination of oxide film formation by conducting deposition under an inert gas environment. Our preliminary GMR measurements of Ni/Cu multilayers from the electrochemical flow reactor obtained at low magnetic field of 0.15 T, which may approach or exceed the highest reported results (-7% GMR) at magnetic fields > 5 kOe.

MODAL CHARACTERISTIC ANALYSIS OF THE APR1400 NUCLEAR REACTOR INTERNALS FOR SEISMIC ANALYSIS

  • Park, Jong-Beom;Choi, Youngin;Lee, Sang-Jeong;Park, No-Cheol;Park, Kyoung-Su;Park, Young-Pil;Park, Chan-Il
    • Nuclear Engineering and Technology
    • /
    • 제46권5호
    • /
    • pp.689-698
    • /
    • 2014
  • Reactor internals are sensitive to dynamic loads such as earthquakes and flow induced vibration. Thus, it is essential to identify the dynamic characteristics to evaluate the seismic integrity of the structures. However, a full-sized system is too large to perform modal experiments, making it difficult to extract data on its modal characteristics. In this research, we constructed a finite element model of the APR1400 reactor internals to identify their modal characteristics. The commercial reactor was selected to reflect the actual boundary conditions. Our FE model was constructed based on scale-similarity analysis and fluid-structure interaction investigations using a fabricated scaled-down model.

DETAILED EVALUATION OF THE IN-VESSEL SEVERE ACCIDENT MANAGEMENT STRATEGY FOR SBLOCA USING SCDAP/RELAP5

  • Park, Rae-Joon;Hong, Seong-Wan;Kim, Sang-Baik;Kim, hee-Dong
    • Nuclear Engineering and Technology
    • /
    • 제41권7호
    • /
    • pp.921-928
    • /
    • 2009
  • As part of an evaluation for an in-vessel severe accident management strategy, a coolant injection into the reactor vessel under depressurization of the reactor coolant system (RCS) has been evaluated in detail using the SCDAP/RELAP5 computer code. A high-pressure sequence of a small break loss of coolant accident (SBLOCA) has been analyzed in the Optimized Power Reactor (OPR) 1000. The SCDAP/RELAP5 results have shown that safety injection timing and capacity with RCS depressurization timing and capacity are very effective on the reactor vessel failure during a severe accident. Only one train operation of the high pressure safety injection (HPSI) for 30,000 seconds with RCS depressurization prevents failure of the reactor vessel. In this case, the operation of only the low pressure safety injection (LPSI) without a HPSI does not prevent failure of the reactor vessel.

다공성 미디어를 충진한 혐기-호기 반응조를 이용한 하수고도처리에 관한 연구 (Advanced Wastewater Treatment Using Anoxic-Aerobic Reactor Filled with Porous Media)

  • 김동하
    • 상하수도학회지
    • /
    • 제21권1호
    • /
    • pp.83-89
    • /
    • 2007
  • A biological anoxic-aerobic reactor filled with porous media was operated in lab scale for the advanced wastewater treatment. The experiments were conducted for 6 months with three HRTs (4, 6, 8hr) and temperature of $23{\sim}25^{\circ}C$. Some other experimental conditions were as follows; nitrification reactor (MLSS 4,500mg/L, DO 3.3mg/L, $23{\sim}28^{\circ}C$), denitrification reactor(MLSS 8,000mg/L, ORP -100mV, Temp.$19{\sim}23^{\circ}C$). Average removal efficiencies of SS, $BOD_5$, $COD_{Cr}$, T-N, and T-P were 97.8%, 95.5%, 94.5%, 80.2%, and 60.6%, respectively. The reactor filled with porosity media showed stable removal capacity for organics and nutrients. Fast and complete nitrification and denitrification were accomplished. Maintaining high MLSS with porous media in the nitrification and denitrification reactor appears to enhance the nitrogen removal process. For the higher T-P removal, some coagulant addition process will be needed.

연속회분식 생물막 반응기(Sequencing Batch Biofilm Reactor)를 이용한 수중의 유기물, 질소 및 인의 동시 제거에 관한 연구 (A Study on the Biological Organic, Nitrogen and Phosphorus Removal in Sequencing Batch Biofilm Reactor)

  • 박민정;김동석
    • 한국환경보건학회지
    • /
    • 제30권2호
    • /
    • pp.84-91
    • /
    • 2004
  • Biological nutrient removal(BNR) from wastewater was performed by adopting various process configurations. The simultaneous biological organics, phosphorus and nitrogen removal of synthetic wastewater was investigated in a sequencing batch biofilm reactor (SBBR). The other reactor was operating as a reference, without biofilm being added. The cycling time in SBR and SBBR was adjusted at 12 hours and then certainly included anaerobic and aerobic conditions. Both systems has been operated with a stable total organic carbon(TOC), nitrogen and phosphorus removal performance for over 90 days. Average removal efficiencies of TOC and total nitrogen were 83% and 95%, respectively. The nitrification rate in SBR was higher than that in SBBR. On the contrary, the denitrification rate in SBBR was higher than that in SBR. The phosphorus release was occurred in SBBR, however, not in SBR because of the inhibition effect of NO$_3$$^{[-10]}$ .

원자로 노외 중성자속 감시 시스템의 이산화 모델링 (Discretization of Ex-core Neutron Flux Monitoring System for Nuclear Rector)

  • 오현철;허섭;구인수;서용석;장문희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2678-2680
    • /
    • 2000
  • In this paper, we calculates mathematical model of ex-core neutron flux monitoring system for nuclear reactor and design the digital system using the bilinear transformations. The output pulse shape and resolving time of the system determines from the proposed method.

  • PDF

이중층 중공사 생물막 담체를 이용한 유동층 생물막 반응기에서의 동시 질산화와 탈질 (Simultaneous Nitrification and Denitrification in a Fluidized Biofilm Reactor with a Hollow Fiber Double Layer Biofilm Media)

  • 이수철;이현용;김동진
    • KSBB Journal
    • /
    • 제15권5호
    • /
    • pp.514-520
    • /
    • 2000
  • Simultaneous nitrification and denitrification of ammonia and organic compounds-containing wastewater were performed in a fluidized bed biofilm reactor with polysulfone(PS) hollow fiber as a double layer biomass carrier. The PS hollow fiber fragment has both aerobic and anoxic environments for the nitrifiaction and denitrification at the shell and lumen-side respectively. The reactor system showed about 80% nitrification efficiency stably throughout the ammonia load conditions applied in the experiment. Denitrification efficiency depended on organic load and C/N ratio. High free ammonia concentration and low dissolved oxygen resulted in nitrite accumulation which leads to enhance organic carbon efficiency in denitrification when compared to nitrate denitrification. The simultaneous nitrification and denitrification reactor system has an economic advantages in reduced chemical cost of organic carbon for denitrification as well as compact reactor configuration.

  • PDF

고온 유동 반응기를 이용한 CF4 분해 반응기구에 대한 선행 연구 (A Preliminary Study on CF4 Decomposition Reaction Mechanism Using High Temperature Flow Reactor)

  • 김영재;이대근;김승곤;노동순;고창복;김용모
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2015년도 제51회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.157-159
    • /
    • 2015
  • In this study, $CF_4$ decomposition was experimentally investigated in a high temperature flow reactor. Effects of temperature, reactant composition and concentration, and residence time on its decomposition into other stable species were analyzed. Then the results were compared to numerical results obtained using Chemkin Plug Flow Reactor model with Princeton Chemistry. As a preliminary result higher decomposition rate is obtained for higher reactor temperature and long residence time when proper reactants are supplied.

  • PDF

선대 평판형 플라즈마장치의 코로나 방전 및 오존발생 특성에 미치는 바이어스된 3전극의 영향 (Effect of the Biased Third Electrode of a Wire-Plate Type Plasma Reactor on Corona Discharge and Ozone Generation Characteristics)

  • 정재승;문재덕
    • 전기학회논문지
    • /
    • 제57권4호
    • /
    • pp.648-652
    • /
    • 2008
  • Corona discharge and ozone generation characteristics of a wire-plate plasma reactor, with a biased third electrode, have been investigated with an emphasis on the role of the bias voltage and frequency applied on the third electrode. It was found that the wire-plate plasma reactor, with the biased third electrode, had a switching characteristic on its I-V characteristics for negative and positive discharges, which is very different from that of a conventional wire-plate plasma reactor without the third electrode. As a result, the corona discharge and ozone generation characteristics of the proposed plasma reactor could be controlled by adjusting the bias voltage and frequency of the third electrode. The corona onset and breakdown voltages, and ozone generation and yield, were increased compared with those of without the third electrode. These, however, reveal the effectiveness of the biased third electrode.

A NEXT GENERATION SODIUM-COOLED FAST REACTOR CONCEPT AND ITS R&D PROGRAM

  • Ichimiya, Masakazu;Mizuno, Tomoyasu;Kotake, Shoji
    • Nuclear Engineering and Technology
    • /
    • 제39권3호
    • /
    • pp.171-186
    • /
    • 2007
  • Critical issues in the development targets for the future fast reactor(FR) cycle system, including sodium-cooled FR were to ensure safety assurance, efficient utilization of resources, reduction of environmental burden, assurance of nuclear non-proliferation, and economic competitiveness. A promising design concept of sodium-cooled fast reactor JSFR is proposed aiming at fully satisfaction of the development targets for the next generation nuclear energy system. A roadmap toward JSFR commercialization is described, to be followed up in a new framework of the Fast reactor Cycle Technology development(FaCT) Project launched in 2006.