• 제목/요약/키워드: reactivity initiated accident (RIA)

검색결과 11건 처리시간 0.029초

링 인장시험을 이용한 지르코늄 피복관의 반응도 사고(RIA) 시 연성 평가 (Evaluation of Ductility During Reactivity Initiated Accident for Zirconium Cladding using Ring Tension Test)

  • 김준환;이명호;최병권;방제건;정용환
    • 한국재료학회지
    • /
    • 제15권2호
    • /
    • pp.126-133
    • /
    • 2005
  • Mechanical properties of zirconium cladding were evaluated by ring tension test to simulate Reactivity-Initiated Accident (RIA) at high burnup situation as an out-reactor test. Zircaloy-4 cladding was hydrided up to 1000 ppm as well as oxidized up to $100\;{\mu}m$ to simulate high-burnup situation. After simulated high-burnup treatment, ring tension test was carried out from 0.01 to 1/sec to correlate with actual RIA event. The results showed that ductility and circumferential toughness decreased with the hydrogen content and oxide thickness. Hydride generated inside cladding acted as brittle failure. Oxygen influenced cladding tube by the reduction of load bearing area, oxygen embrittlement, and thermal aging. Correlation between in-reactor RIA parameter like fuel enthalpy and out-reactor toughness was performed and showed a reasonable result.

Uncertainty and sensitivity analysis in reactivity-initiated accident fuel modeling: synthesis of organisation for economic co-operation and development (OECD)/nuclear energy agency (NEA) benchmark on reactivity-initiated accident codes phase-II

  • Marchand, Olivier;Zhang, Jinzhao;Cherubini, Marco
    • Nuclear Engineering and Technology
    • /
    • 제50권2호
    • /
    • pp.280-291
    • /
    • 2018
  • In the framework of OECD/NEA Working Group on Fuel Safety, a RIA fuel-rod-code Benchmark Phase I was organized in 2010-2013. It consisted of four experiments on highly irradiated fuel rodlets tested under different experimental conditions. This benchmark revealed the need to better understand the basic models incorporated in each code for realistic simulation of the complicated integral RIA tests with high burnup fuel rods. A second phase of the benchmark (Phase II) was thus launched early in 2014, which has been organized in two complementary activities: (1) comparison of the results of different simulations on simplified cases in order to provide additional bases for understanding the differences in modelling of the concerned phenomena; (2) assessment of the uncertainty of the results. The present paper provides a summary and conclusions of the second activity of the Benchmark Phase II, which is based on the input uncertainty propagation methodology. The main conclusion is that uncertainties cannot fully explain the difference between the code predictions. Finally, based on the RIA benchmark Phase-I and Phase-II conclusions, some recommendations are made.

Analysis of Control Element Assembly Withdrawal at Full Power Accident Scenario Using a Hybrid Conservative and BEPU Approach

  • Kajetan Andrzej Rey;Jan Hruskovic;Aya Diab
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3787-3800
    • /
    • 2023
  • Reactivity Initiated Accident (RIA) scenarios require special attention using advanced simulation techniques due to their complexity and importance for nuclear power plant (NPP) safety. While the conservative approach has traditionally been used for safety analysis, it may lead to unrealistic results which calls for the use of best estimate plus uncertainty (BEPU) approach, especially with the current advances in computational power which makes the BEPU analysis feasible. In this work an Uncontrolled Control Element Assembly (CEA) Withdrawal at Full Power accident scenario is analyzed using the BEPU approach by loosely coupling the thermal hydraulics best-estimate system code (RELAP5/SCDAPSIM/MOD3.4) to the statistical analysis software (DAKOTA) using a Python interface. Results from the BEPU analysis indicate that a realistic treatment of the accident scenario yields a larger safety margin and is therefore encouraged for accident analysis as it may enable more economic and flexible operation.

A critical study on best methodology to perform UQ for RIA transients and application to SPERT-III experiments

  • Dokhane, A.;Vasiliev, A.;Hursin, M.;Rochman, D.;Ferroukhi, H.
    • Nuclear Engineering and Technology
    • /
    • 제54권5호
    • /
    • pp.1804-1812
    • /
    • 2022
  • The aim of this paper is to assess the reliability and accuracy of the PSI standard method, used in many previous works, for the quantification of ND uncertainties in the SPERT-III RIA transient, by quantifying the discrepancy between the actual inserted reactivity and the original static reactivity worth and their associated uncertainties. The assessment has shown that the inherent S3K neutron source renormalization scheme, introduced before starting the transient, alters the original static reactivity worth of the transient CR and reduces the associated uncertainty due to the ND perturbation. In order to overcome these limitations, two additional methods have been developed based on CR adjustment. The comparative study performed between the three methods has showed clearly the high sensitivity of the obtained results to the selected approach and pointed out the importance of using the right procedure in order to simulate correctly the effect of ND uncertainties on the overall parameters in a RIA transient. This study has proven that the approach that allows matching the original static reactivity worth and starting the transient from criticality is the most reliable method since it conservatively preserves the effect of the ND uncertainties on the inserted reactivity during a RIA transient.

A Systems Engineering Approach to Multi-Physics Analysis of CEA Ejection Accident

  • Sebastian Grzegorz Dzien;Aya Diab
    • 시스템엔지니어링학술지
    • /
    • 제19권2호
    • /
    • pp.46-58
    • /
    • 2023
  • Deterministic safety analysis is a crucial part of safety assessment, particularly when it comes to demonstrating the safety of nuclear power plant designs. The traditional approach to deterministic safety analysis models is to model the nuclear core using point kinetics. However, this simplified approach does not fully reflect the real core behavior with proper moderator and fuel reactivity feedbacks during the transient. The use of Multi-Physics approach allows more precise simulation reflecting the inherent three-dimensionality (3D) of the problem by representing the detailed 3D core, with instantaneous updates of feedback mechanisms due to changes of important reactivity parameters like fuel temperature coefficient (FTC) and moderator temperature coefficient (MTC). This paper addresses a CEA ejection accident at hot full power (HFP), in which the underlying strong and un-symmetric feedback between thermal-hydraulics and reactor kinetics exist. For this purpose, a multi-physics analysis tool has been selected with the nodal kinetics code, 3DKIN, implicitly coupled to the thermal-hydraulic code, RELAP5, for real-time communication and data exchange. This coupled approach enables high fidelity three-dimensional simulation and is therefore especially relevant to reactivity initiated accident (RIA) scenarios and power distribution anomalies with strong feedback mechanisms and/or un-symmetrical characteristics as in the CEA ejection accident. The Systems Engineering approach is employed to provide guidance in developing the work in a systematic and efficient fashion.

Effects of Zr-hydride distribution of irradiated Zircaloy-2 cladding in RIA-simulating pellet-clad mechanical interaction testing

  • Magnusson, Per;Alvarez-Holston, Anna-Maria;Ammon, Katja;Ledergerber, Guido;Nilsson, Marcus;Schrire, David;Nissen, Klaus;Wright, Jonathan
    • Nuclear Engineering and Technology
    • /
    • 제50권2호
    • /
    • pp.246-252
    • /
    • 2018
  • A series of simulated reactivity-initiated accident (RIA) tests on irradiated fully recrystallized boiling water reactor Zircaloy-2 cladding has been performed by means of the expansion-due-to-compression (EDC) test method. The EDC method reproduces fuel pellet-clad mechanical interaction (PCMI) conditions for the cladding during RIA transients with respect to temperature and loading rates by out-of-pile mechanical testing. The tested materials had a large variation in burnup and hydrogen content (up to 907 wppm). The results of the EDC tests showed variation in the PCMI resistance of claddings with similar burnup and hydrogen content, making it difficult to clearly identify ductile-to-brittle transition temperatures. The EDC-tested samples of the present and previous work were investigated by light optical and scanning electron microscopy to study the influence of factors such as azimuthal variation of the Zr-hydrides and the presence of hydride rims and radially oriented hydrides. Two main characteristics were identified in samples with low ductility with respect to hydrogen content and test temperature: hydride rims and radial hydrides at the cladding outer surface. Crack propagation and failure modes were also studied, showing two general modes of crack propagation depending on distribution and amount of radially oriented hydrides. It was concluded that the PCMI resistance of irradiated cladding under normal conditions with homogenously distributed circumferential hydrides is high, with good margin to the RIA failure limits. To further improve safety, focus should be on conditions causing nonfavorable hydride distribution, such as hydride reorientation and formation of hydride blisters at the cladding outer surface.

FUEL BEHAVIOR UNDER LOSS-OF-COOLANT ACCIDENT SITUATIONS

  • CHUNG HEE M.
    • Nuclear Engineering and Technology
    • /
    • 제37권4호
    • /
    • pp.327-362
    • /
    • 2005
  • The design, construction, and operation of a light water reactor (LWR) are subject to compliance with safety criteria specified for accident situations, such as loss-of-coolant accident (LOCA) and reactivity-initiated accident (RIA). Because reactor fuel is the primary source of radioactivity and heat generation, such a criterion is established on the basis of the characteristics and performance of fuel under the specific accident condition. As such, fuel behavior under accident situations impact many aspects of fuel design and power generation, and in an indirect manner, even spent fuel storage and management. This paper provides a comprehensive review of: the history of the current LOCA criteria, results of LOCA-related investigations on conventional and new classes of fuel, and status of on-going studies on high-burnup fuel under LOCA situations. The objective of the paper is to provide a better understanding of important issues and an insight helpful to establish new LOCA criteria for modem LWR fuels.

A Systems Engineering Approach to Multi-Physics Analysis of a CEA Withdrawal Accident

  • Jan, Hruskovic;Kajetan Andrzej, Rey;Aya, Diab
    • 시스템엔지니어링학술지
    • /
    • 제18권2호
    • /
    • pp.58-74
    • /
    • 2022
  • Deterministic accident analysis plays a central role in the nuclear power plant (NPP) safety evaluation and licensing process. Traditionally the conservative approach opted for the point kinetics model, expressing the reactor core parameters in the form of reactivity and power tables. However, with the current advances in computational power, high fidelity multi-physics simulations using real-time code coupling, can provide more detailed core behavior and hence more realistic plant's response. This is particularly relevant for transients where the core is undergoing reactivity anomalies and uneven power distributions with strong feedback mechanisms, such as reactivity initiated accidents (RIAs). This work addresses a RIA, specifically a control element assembly (CEA) withdrawal at power, using the multi-physics analysis tool RELAP5/MOD 3.4/3DKIN. The thermal-hydraulics (TH) code, RELAP5, is internally coupled with the nodal kinetics (NK) code, 3DKIN, and both codes exchange relevant data to model the nuclear power plant (NPP) response as the CEA is withdrawn from the core. The coupled model is more representative of the complex interactions between the thermal-hydraulics and neutronics; therefore the results obtained using a multi-physics simulation provide a larger safety margin and hence more operational flexibility compared to those of the point kinetics model reported in the safety analysis report for APR1400. The systems engineering approach is used to guide the development of the work ensuring a systematic and more efficient execution.

Simulation of reactivity-initiated accident transients on UO2-M5® fuel rods with ALCYONE V1.4 fuel performance code

  • Guenot-Delahaie, Isabelle;Sercombe, Jerome;Helfer, Thomas;Goldbronn, Patrick;Federici, Eric;Jolu, Thomas Le;Parrot, Aurore;Delafoy, Christine;Bernaudat, Christian
    • Nuclear Engineering and Technology
    • /
    • 제50권2호
    • /
    • pp.268-279
    • /
    • 2018
  • The ALCYONE multidimensional fuel performance code codeveloped by the CEA, EDF, and AREVA NP within the PLEIADES software environment models the behavior of fuel rods during irradiation in commercial pressurized water reactors (PWRs), power ramps in experimental reactors, or accidental conditions such as loss of coolant accidents or reactivity-initiated accidents (RIAs). As regards the latter case of transient in particular, ALCYONE is intended to predictively simulate the response of a fuel rod by taking account of mechanisms in a way that models the physics as closely as possible, encompassing all possible stages of the transient as well as various fuel/cladding material types and irradiation conditions of interest. On the way to complying with these objectives, ALCYONE development and validation shall include tests on $PWR-UO_2$ fuel rods with advanced claddings such as M5(R) under "low pressure-low temperature" or "high pressure-high temperature" water coolant conditions. This article first presents ALCYONE V1.4 RIA-related features and modeling. It especially focuses on recent developments dedicated on the one hand to nonsteady water heat and mass transport and on the other hand to the modeling of grain boundary cracking-induced fission gas release and swelling. This article then compares some simulations of RIA transients performed on $UO_2$-M5(R) fuel rods in flowing sodium or stagnant water coolant conditions to the relevant experimental results gained from tests performed in either the French CABRI or the Japanese NSRR nuclear transient reactor facilities. It shows in particular to what extent ALCYONE-starting from base irradiation conditions it itself computes-is currently able to handle both the first stage of the transient, namely the pellet-cladding mechanical interaction phase, and the second stage of the transient, should a boiling crisis occur. Areas of improvement are finally discussed with a view to simulating and analyzing further tests to be performed under prototypical PWR conditions within the CABRI International Program. M5(R) is a trademark or a registered trademark of AREVA NP in the USA or other countries.